The fluctuation exchange, or FLEX, approximation for interacting electrons is
applied to study instabilities in the standard three-band model for CuO2 layers
in the high-temperature superconductors. Both intra-orbital and near-neigbor
Coulomb interactions are retained. The filling dependence of the d(x2-y2)
transition temperature is studied in both the "hole-doped" and "electron-doped"
regimes using parameters derived from constrained-occupancy density-functional
theory for La2CuO4. The agreement with experiment on the overdoped hole side of
the phase diagram is remarkably good, i.e., transitions emerge in the 40 K
range with no free parameters. In addition the importance of the "orbital
antiferromagnetic," or flux phase, charge density channel is emphasized for an
understanding of the underdoped regime.Comment: REVTex and PostScript, 31 pages, 26 figures; to appear in Phys. Rev.
B (1998); only revised EPS figures 3, 4, 6a, 6b, 6c, 7 and 8 to correct
disappearance of some labels due to technical problem