6 research outputs found

    Classification of 41 Hand and Wrist Movements via Surface Electromyogram Using Deep Neural Network

    Get PDF
    Surface electromyography (sEMG) is a non-invasive and straightforward way to allow the user to actively control the prosthesis. However, results reported by previous studies on using sEMG for hand and wrist movement classification vary by a large margin, due to several factors including but not limited to the number of classes and the acquisition protocol. The objective of this paper is to investigate the deep neural network approach on the classification of 41 hand and wrist movements based on the sEMG signal. The proposed models were trained and evaluated using the publicly available database from the Ninapro project, one of the largest public sEMG databases for advanced hand myoelectric prosthetics. Two datasets, DB5 with a low-cost 16 channels and 200 Hz sampling rate setup and DB7 with 12 channels and 2 kHz sampling rate setup, were used for this study. Our approach achieved an overall accuracy of 93.87 ± 1.49 and 91.69 ± 4.68% with a balanced accuracy of 84.00 ± 3.40 and 84.66 ± 4.78% for DB5 and DB7, respectively. We also observed a performance gain when considering only a subset of the movements, namely the six main hand movements based on six prehensile patterns from the Southampton Hand Assessment Procedure (SHAP), a clinically validated hand functional assessment protocol. Classification on only the SHAP movements in DB5 attained an overall accuracy of 98.82 ± 0.58% with a balanced accuracy of 94.48 ± 2.55%. With the same set of movements, our model also achieved an overall accuracy of 99.00% with a balanced accuracy of 91.27% on data from one of the amputee participants in DB7. These results suggest that with more data on the amputee subjects, our proposal could be a promising approach for controlling versatile prosthetic hands with a wide range of predefined hand and wrist movements

    Data-driven categorization of postoperative delirium symptoms using unsupervised machine learning

    Get PDF
    BackgroundPhenotyping analysis that includes time course is useful for understanding the mechanisms and clinical management of postoperative delirium. However, postoperative delirium has not been fully phenotyped. Hypothesis-free categorization of heterogeneous symptoms may be useful for understanding the mechanisms underlying delirium, although evidence is currently lacking. Therefore, we aimed to explore the phenotypes of postoperative delirium following invasive cancer surgery using a data-driven approach with minimal prior knowledge.MethodsWe recruited patients who underwent elective invasive cancer resection. After surgery, participants completed 5 consecutive days of delirium assessments using the Delirium Rating Scale-Revised-98 (DRS-R-98) severity scale. We categorized 65 (13 questionnaire items/day × 5 days) dimensional DRS-R-98 scores using unsupervised machine learning (K-means clustering) to derive a small set of grouped features representing distinct symptoms across all participants. We then reapplied K-means clustering to this set of grouped features to delineate multiple clusters of delirium symptoms.ResultsParticipants were 286 patients, of whom 91 developed delirium defined according to Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, criteria. Following the first K-means clustering, we derived four grouped symptom features: (1) mixed motor, (2) cognitive and higher-order thinking domain with perceptual disturbance and thought content abnormalities, (3) acute and temporal response, and (4) sleep–wake cycle disturbance. Subsequent K-means clustering permitted classification of participants into seven subgroups: (i) cognitive and higher-order thinking domain dominant delirium, (ii) prolonged delirium, (iii) acute and brief delirium, (iv) subsyndromal delirium-enriched, (v) subsyndromal delirium-enriched with insomnia, (vi) insomnia, and (vii) fit.ConclusionWe found that patients who have undergone invasive cancer resection can be delineated using unsupervised machine learning into three delirium clusters, two subsyndromal delirium clusters, and an insomnia cluster. Validation of clusters and research into the pathophysiology underlying each cluster will help to elucidate the mechanisms of postoperative delirium after invasive cancer surgery

    タッキュウ ストローク ギジュツ ヒョウカ ノ タメ ノ マルチ モーダル アプローチ

    No full text
    修士(Master)工学(Engineering)奈良先端科学技術大学院大学修第8688

    Recurrent Neural-Based Vehicle Demand Forecasting and Relocation Optimization for Car-Sharing System: A Real Use Case in Thailand

    No full text
    A car-sharing system has been playing an important role as an alternative transport mode in order to avoid traffic congestion and pollution due to a quick growth of usage of private cars. In this paper, we propose a novel vehicle relocation system with a major improvement in threefolds: (i) data preprocessing, (ii) demand forecasting, and (iii) relocation optimization. The data preprocessing is presented in order to automatically remove fake demands caused by search failures and application errors. Then, the real demand is forecasted using a deep learning approach, Bidirectional Gated Recurrent Unit. Finally, the Minimum Cost Maximum Flow algorithm is deployed to maximize forecasted demands, while minimizing the amount of relocations. Furthermore, the system is deployed in the real use case, entitled “CU Toyota Ha:mo,” which is a car-sharing system in Chulalongkorn University. It is based on a web application along with rule-based notification via Line. The experiment was conducted based on the real vehicle usage data in 2019. By comparing in real environment in November of 2019, the results show that our model even outperforms the manual relocation by experienced staff. It achieved a 3% opportunity loss reduction and 3% less relocation trips, reducing human effort by 17 man-hours/week
    corecore