11 research outputs found

    Ground-based optical transmission spectrum of the hot Jupiter HAT-P-1b

    Full text link
    Time-series spectrophotometric studies of exoplanets during transit using ground-based facilities are a promising approach to characterize their atmospheric compositions. We aim to investigate the transit spectrum of the hot Jupiter HAT-P-1b. We compare our results to those obtained at similar wavelengths by previous space-based observations. We observed two transits of HAT-P-1b with the Gemini Multi-Object Spectrograph (GMOS) instrument on the Gemini North telescope using two instrument modes covering the 320 - 800 nm and 520 - 950 nm wavelength ranges. We used time-series spectrophotometry to construct transit light curves in individual wavelength bins and measure the transit depths in each bin. We accounted for systematic effects. We addressed potential photometric variability due to magnetic spots in the planet's host star with long-term photometric monitoring. We find that the resulting transit spectrum is consistent with previous Hubble Space Telescope (HST) observations. We compare our observations to transit spectroscopy models that marginally favor a clear atmosphere. However, the observations are also consistent with a flat spectrum, indicating high-altitude clouds. We do not detect the Na resonance absorption line (589 nm), and our observations do not have sufficient precision to study the resonance line of K at 770 nm. We show that even a single Gemini/GMOS transit can provide constraining power on the properties of the atmosphere of HAT-P-1b to a level comparable to that of HST transit studies in the optical when the observing conditions and target and reference star combination are suitable. Our 520 - 950 nm observations reach a precision comparable to that of HST transit spectra in a similar wavelength range of the same hot Jupiter, HAT-P-1b. However, our GMOS transit between 320 - 800 nm suffers from strong systematic effects and yields larger uncertainties.Comment: A&A, accepted, 16 pages, 8 figures, 5 table

    A new method to correct for host star variability in multi-epoch observations of exoplanet transmission spectra

    Full text link
    Transmission spectra of exoplanets orbiting active stars suffer from wavelength-dependent effects due to stellar photospheric heterogeneity. WASP-19b, an ultra-hot Jupiter (Teq_{eq} \sim 2100 K), is one such strongly irradiated gas-giant orbiting an active solar-type star. We present optical (520-900 nm) transmission spectra of WASP-19b obtained across eight epochs using the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-South telescope. We apply our recently developed Gaussian Processes regression based method to model the transit light curve systematics and extract the transmission spectrum at each epoch. We find that WASP-19b's transmission spectrum is affected by stellar variability at individual epochs. We report an observed anticorrelation between the relative slopes and offsets of the spectra across all epochs. This anticorrelation is consistent with the predictions from the forward transmission models, which account for the effect of unocculted stellar spots and faculae measured previously for WASP-19. We introduce a new method to correct for this stellar variability effect at each epoch by using the observed correlation between the transmission spectral slopes and offsets. We compare our stellar variability corrected GMOS transmission spectrum with previous contradicting MOS measurements for WASP-19b and attempt to reconcile them. We also measure the amplitude and timescale of broadband stellar variability of WASP-19 from TESS photometry, which we find to be consistent with the effect observed in GMOS spectroscopy and ground-based broadband photometric long-term monitoring. Our results ultimately caution against combining multi-epoch optical transmission spectra of exoplanets orbiting active stars before correcting each epoch for stellar variability.Comment: Accepted for publication in MNRA

    Probing reflection from aerosols with the near-infrared dayside spectrum of WASP-80b

    Full text link
    The presence of aerosols is intimately linked to the global energy budget and the composition of a planet's atmospheres. Their ability to reflect incoming light prevents energy from being deposited into the atmosphere, and they shape spectra of exoplanets. We observed five near-infrared secondary eclipses of WASP-80b with the Wide Field Camera 3 (WFC3) aboard the \textit{Hubble Space Telescope} to provide constraints on the presence and properties of atmospheric aerosols. We detect a broadband eclipse depth of 34±1034\pm10\,ppm for WASP-80b. We detect a higher planetary flux than expected from thermal emission alone at 1.6σ1.6\sigma, which hints toward the presence of reflecting aerosols on this planet's dayside, indicating a geometric albedo of Ag<0.33A_g<0.33 at 3σ\sigma. We paired the WFC3 data with Spitzer data and explored multiple atmospheric models with and without aerosols to interpret this spectrum. Albeit consistent with a clear dayside atmosphere, we found a slight preference for near-solar metallicities and for dayside clouds over hazes. We exclude soot haze formation rates higher than 1010.710^{-10.7} g cm2^{-2}s1^{-1} and tholin formation rates higher than 1012.010^{-12.0} g cm2^{-2}s1^{-1} at 3σ3\sigma. We applied the same atmospheric models to a previously published WFC3/Spitzer transmission spectrum for this planet and found weak haze formation. A single soot haze formation rate best fits both the dayside and the transmission spectra simultaneously. However, we emphasize that no models provide satisfactory fits in terms of the chi-square of both spectra simultaneously, indicating longitudinal dissimilarity in the atmosphere's aerosol composition.Comment: Published in ApJ Letters (20 Oct 2023

    Astrobites as a Community-led Model for Education, Science Communication, and Accessibility in Astrophysics

    Get PDF
    Support for early career astronomers who are just beginning to explore astronomy research is imperative to increase retention of diverse practitioners in the field. Since 2010, Astrobites has played an instrumental role in engaging members of the community -- particularly undergraduate and graduate students -- in research. In this white paper, the Astrobites collaboration outlines our multi-faceted online education platform that both eases the transition into astronomy research and promotes inclusive professional development opportunities. We additionally offer recommendations for how the astronomy community can reduce barriers to entry to astronomy research in the coming decade

    Updated Planetary Mass Constraints of the Young V1298 Tau System Using MAROON-X

    Get PDF
    The early K-type T-Tauri star, V1298 Tau (V=10magV=10\,{\rm mag}, age2030Myr{\rm age}\approx20-30\,{\rm Myr}) hosts four transiting planets with radii ranging from 4.99.6R4.9-9.6\,R_\oplus. The three inner planets have orbital periods of 824d\approx8-24\,{\rm d} while the outer planet's period is poorly constrained by single transits observed with \emph{K2} and \emph{TESS}. Planets b, c, and d are proto-sub-Neptunes that may be undergoing significant mass loss. Depending on the stellar activity and planet masses, they are expected to evolve into super-Earths/sub-Neptunes that bound the radius valley. Here we present results of a joint transit and radial velocity (RV) modelling analysis, which includes recently obtained \emph{TESS} photometry and MAROON-X RV measurements. Assuming circular orbits, we obtain a low-significance (2σ\approx2\sigma) RV detection of planet c implying a mass of 19.88.9+9.3M19.8_{-8.9}^{+9.3}\,M_\oplus and a conservative 2σ2\sigma upper limit of <39M<39\,M_\oplus. For planets b and d, we derive 2σ2\sigma upper limits of Mb<159MM_{\rm b}<159\,M_\oplus and Md<41MM_{\rm d}<41\,M_\oplus. For planet e, plausible discrete periods of Pe>55.4dP_{\rm e}>55.4\,{\rm d} are ruled out at a 3σ3\sigma level while seven solutions with 43.3<Pe/d<55.443.3<P_{\rm e}/{\rm d}<55.4 are consistent with the most probable 46.768131±000076d46.768131\pm000076\,{\rm d} solution within 3σ3\sigma. Adopting the most probable solution yields a 2.6σ2.6\sigma RV detection with mass a of 0.66±0.26MJup0.66\pm0.26\,M_{\rm Jup}. Comparing the updated mass and radius constraints with planetary evolution and interior structure models shows that planets b, d, and e are consistent with predictions for young gas-rich planets and that planet c is consistent with having a water-rich core with a substantial (5%\sim5\% by mass) H2_2 envelope.Comment: 18 pages, 13 figures, accepted for publication in A

    Reproduction package for "Probing reflection from aerosols with the near-infrared dayside spectrum of WASP-80b"

    No full text
    &lt;p&gt;This is a basic reproduction package for the paper "Probing reflection from&lt;/p&gt;&lt;p&gt;aerosols with the near-infrared dayside spectrum of WASP-80b"&lt;/p&gt;&lt;p&gt;by [Jacobs, B.; Désert, J. -M.; Gao P. et al. (2023)](https://doi.org/10.3847/2041-8213/acfee9).&lt;/p&gt;&lt;p&gt;Abstract:&lt;/p&gt;&lt;p&gt;The presence of aerosols is intimately linked to the global energy budget and the composition of a planet's atmospheres. Their ability to reflect incoming light prevents energy from being deposited into the atmosphere, and they shape spectra of exoplanets. We observed five near-infrared secondary eclipses of WASP-80b&lt;/p&gt;&lt;p&gt;with the Wide Field Camera 3 (WFC3) aboard the Hubble Space Telescope to provide constraints on the presence and properties of atmospheric aerosols.&lt;/p&gt;&lt;p&gt;We detect a broadband eclipse depth of 34\pm10 ppm for WASP-80b. We detect a higher planetary flux than expected from thermal emission alone at 1.6 sigma, which hints toward the presence of reflecting aerosols on this planet's dayside, indicating a geometric albedo of A_g&lt;0.33 at 3 sigma.&lt;/p&gt;&lt;p&gt;We paired the WFC3 data with Spitzer data and explored multiple atmospheric models with and without aerosols to interpret this spectrum.&lt;/p&gt;&lt;p&gt;Albeit consistent with a clear dayside atmosphere, we found a slight preference for near-solar metallicities and for dayside clouds over hazes. We exclude soot haze formation rates higher than 10^{-10.7} g cm^{-2} s^{-1} and tholin formation rates higher than 10^{-12.0} g cm^{-2} s^{-1} at 3 sigma.&lt;/p&gt;&lt;p&gt;We applied the same atmospheric models to a previously published WFC3/Spitzer transmission spectrum for this planet and found weak haze formation.&lt;/p&gt;&lt;p&gt;A single soot haze formation rate best fits both the dayside and the transmission spectra simultaneously. However, we emphasize that no models provide satisfactory fits in terms of the chi-square of both spectra simultaneously, indicating longitudinal dissimilarity in the atmosphere's aerosol composition.&lt;/p&gt

    Reproduction package for the paper "Measuring the variability of directly imaged exoplanets using vector Apodizing Phase Plates combined with ground-based differential spectrophotometry"

    No full text
    This is a basic reproduction package for the paper "Measuring the variability of directly imaged exoplanets using vector Apodizing Phase Plates combined with ground-based differential spectrophotometry" by Sutlieff et al. (2023). It aims to provide the most important data products to check and reproduce the main results of the paper

    Astrobites as a Community-led Model for Education, Science Communication, and Accessibility in Astrophysics

    Get PDF
    Support for early career astronomers who are just beginning to explore astronomy research is imperative to increase retention of diverse practitioners in the field. Since 2010, Astrobites has played an instrumental role in engaging members of the community -- particularly undergraduate and graduate students -- in research. In this white paper, the Astrobites collaboration outlines our multi-faceted online education platform that both eases the transition into astronomy research and promotes inclusive professional development opportunities. We additionally offer recommendations for how the astronomy community can reduce barriers to entry to astronomy research in the coming decade

    Astrobites as a Community-led Model for Education, Science Communication, and Accessibility in Astrophysics

    No full text
    Support for early career astronomers who are just beginning to explore astronomy research is imperative to increase retention of diverse practitioners in the field. Since 2010, Astrobites has played an instrumental role in engaging members of the community -- particularly undergraduate and graduate students -- in research. In this white paper, the Astrobites collaboration outlines our multi-faceted online education platform that both eases the transition into astronomy research and promotes inclusive professional development opportunities. We additionally offer recommendations for how the astronomy community can reduce barriers to entry to astronomy research in the coming decade
    corecore