2 research outputs found

    Data_Sheet_1_The horizontal ladder test (HLT) protocol: a novel, optimized, and reliable means of assessing motor coordination in Sus scrofa domesticus.zip

    No full text
    Pigs can be an important model for preclinical biological research, including neurological diseases such as Alcohol Use Disorder. Such research often involves longitudinal assessment of changes in motor coordination as the disease or disorder progresses. Current motor coordination tests in pigs are derived from behavioral assessments in rodents and lack critical aspects of face and construct validity. While such tests may permit for the comparison of experimental results to rodents, a lack of validation studies of such tests in the pig itself may preclude the drawing of meaningful conclusions. To address this knowledge gap, an apparatus modeled after a horizontally placed ladder and where the height of the rungs could be adjusted was developed. The protocol that was employed within the apparatus mimicked the walk and turn test of the human standardized field sobriety test. Here, five Sinclair miniature pigs were trained to cross the horizontally placed ladder, starting at a rung height of six inches and decreasing to three inches in one-inch increments. It was demonstrated that pigs can reliably learn to cross the ladder, with few errors, under baseline/unimpaired conditions. These animals were then involved in a voluntary consumption of ethanol study where animals were longitudinally evaluated for motor coordination changes at baseline, 2.5, 5, 7.5, and 10% ethanol concentrations subsequently to consuming ethanol. Consistent with our predictions, relative to baseline performance, motor incoordination increased as voluntary consumption of escalating concentrations of ethanol increased. Together these data highlight that the horizontal ladder test (HLT) test protocol is a novel, optimized and reliable test for evaluating motor coordination as well as changes in motor coordination in pigs.</p

    Sex Differences in the Brain Transcriptome Related to Alcohol Effects and Alcohol Use Disorder.

    No full text
    There is compelling evidence that sex and gender have crucial roles in excessive alcohol (ethanol) consumption. Here, we review some of the data from the perspective of brain transcriptional differences between males and females, focusing on rodent animal models. A key emerging transcriptional feature is the role of neuroimmune processes. Microglia are the resident neuroimmune cells in the brain and exhibit substantial functional differences between males and females. Selective breeding for binge ethanol consumption and the impacts of chronic ethanol consumption and withdrawal from chronic ethanol exposure all demonstrate sex-dependent neuroimmune signatures. A focus is on resolving sex-dependent differences in transcriptional responses to ethanol at the neurocircuitry level. Sex-dependent transcriptional differences are found in the extended amygdala and the nucleus accumbens. Telescoping of ethanol consumption is found in some, but not all, studies to be more prevalent in females. Recent transcriptional studies suggest that some sex differences may be due to female-dependent remodeling of the primary cilium. An interesting theme appears to be developing: at least from the animal model perspective, even when males and females are phenotypically similar, they differ significantly at the level of the transcriptome
    corecore