112 research outputs found

    Multi-membership gene regulation in pathway based microarray analysis

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results: We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions: We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.The work was sponsored by the studentship scheme of the School of Information Systems, Computing and Mathematics, Brunel Universit

    Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage

    Get PDF
    Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine‐tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re‐organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin‐sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells

    Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin

    Get PDF
    Microtubule severing enzymes regulate microtubule dynamics in a wide range of organisms and are implicated in important cell cycle processes such as mitotic spindle assembly and disassembly, chromosome movement and cytokinesis. Here we explore the function of several microtubule severing enzyme homologues, the katanins (KAT80, KAT60a, KAT60b and KAT60c), spastin (SPA) and fidgetin (FID) in the bloodstream stage of the African trypanosome parasite, Trypanosoma brucei. The trypanosome cytoskeleton is microtubule based and remains assembled throughout the cell cycle, necessitating its remodelling during cytokinesis. Using RNA interference to deplete individual proteins, we show that the trypanosome katanin and spastin homologues are non-redundant and essential for bloodstream form proliferation. Further, cell cycle analysis revealed that these proteins play essential but discrete roles in cytokinesis. The KAT60 proteins each appear to be important during the early stages of cytokinesis, while downregulation of KAT80 specifically inhibited furrow ingression and SPA depletion prevented completion of abscission. In contrast, RNA interference of FID did not result in any discernible effects. We propose that the stable microtubule cytoskeleton of T. brucei necessitates the coordinated action of a family of katanins and spastin to bring about the cytoskeletal remodelling necessary to complete cell divisio

    Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We generalized penalized canonical correlation analysis for analyzing microarray gene-expression measurements for checking completeness of known metabolic pathways and identifying candidate genes for incorporation in the pathway. We used Wold's method for calculation of the canonical variates, and we applied ridge penalization to the regression of pathway genes on canonical variates of the non-pathway genes, and the elastic net to the regression of non-pathway genes on the canonical variates of the pathway genes.</p> <p>Results</p> <p>We performed a small simulation to illustrate the model's capability to identify new candidate genes to incorporate in the pathway: in our simulations it appeared that a gene was correctly identified if the correlation with the pathway genes was 0.3 or more. We applied the methods to a gene-expression microarray data set of 12, 209 genes measured in 45 patients with glioblastoma, and we considered genes to incorporate in the glioma-pathway: we identified more than 25 genes that correlated > 0.9 with canonical variates of the pathway genes.</p> <p>Conclusion</p> <p>We concluded that penalized canonical correlation analysis is a powerful tool to identify candidate genes in pathway analysis.</p

    A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis

    Get PDF
    It is well known that the parallel order of microtubules in the plant cell cortex defines the direction of cell expansion, yet it remains unclear how microtubule orientation is controlled, especially on a cell-wide basis. Here we show through 4D imaging and computational modelling that plant cell polyhedral geometry provides spatial input that determines array orientation and heterogeneity. Microtubules depolymerize when encountering sharp cell edges head-on, whereas those oriented parallel to those sharp edges remain. Edge-induced microtubule depolymerization, however, is overcome by the microtubule-associated protein CLASP, which accumulates at specific cell edges, enables microtubule growth around sharp edges and promotes formation of microtubule bundles that span adjacent cell faces. By computationally modelling dynamic 'microtubules on a cube' with edges differentially permissive to microtubule passage, we show that the CLASP-edge complex is a 'tuneable' microtubule organizer, with the inherent flexibility to generate the numerous cortical array patterns observed in nature

    Study protocol: population screening for colorectal cancer by colonoscopy or CT colonography: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colorectal cancer (CRC) is the second most prevalent type of cancer in Europe. Early detection and removal of CRC or its precursor lesions by population screening can reduce mortality. Colonoscopy and computed tomography colonography (CT colonography) are highly accurate exams and screening options that examine the entire colon. The success of screening depends on the participation rate. We designed a randomized trial to compare the uptake, yield and costs of direct colonoscopy population screening, using either a telephone consultation or a consultation at the outpatient clinic, versus CT colonography first, with colonoscopy in CT colonography positives.</p> <p>Methods and design</p> <p>7,500 persons between 50 and 75 years will be randomly selected from the electronic database of the municipal administration registration and will receive an invitation to participate in either CT colonography (2,500 persons) or colonoscopy (5,000 persons) screening. Those invited for colonoscopy screening will be randomized to a prior consultation either by telephone or a visit at the outpatient clinic. All CT colonography invitees will have a prior consultation by telephone. Invitees are instructed to consult their general practitioner and not to participate in screening if they have symptoms suggestive for CRC. After providing informed consent, participants will be scheduled for the screening procedure. The primary outcome measure of this study is the participation rate. Secondary outcomes are the diagnostic yield, the expected and perceived burden of the screening test, level of informed choice and cost-effectiveness of both screening methods.</p> <p>Discussion</p> <p>This study will provide further evidence to enable decision making in population screening for colorectal cancer.</p> <p>Trial registration</p> <p>Dutch trial register: NTR1829</p

    The morphogenesis of lobed plant cells in the mesophyll and epidermis: Organization and distinct roles of cortical microtubules and actin filaments

    No full text
    The morphogenesis of lobed plant cells has been considered to be controlled by microtubule (MT) and/or actin filament (AF) organization. In this article, a comprehensive mechanism is proposed, in which distinct roles are played by these cytoskeletal components. First, cortical MT bundles and, in the case of pavement cells, radial MT arrays combined with MT bundles determine the deposition of local cell wall thickenings, the cellulose microfibrils of which copy the orientation of underlying MTs. Cell growth is thus locally prevented and, consequently, lobes and constrictions are formed. Arch-like tangential expansion is locally imposed at the external periclinal wall of pavement cells by the radial arrangement of cellulose microfibrils at every wall thickening. Whenever further elongation of the original cell lobes occurs, AF patches assemble at the tips of growing lobes. Intercellular space formation is promoted or prevented by the opposite or alternate, respectively, arrangement of cortical MT arrays between neighboring cells. The genes that are possibly involved in the molecular regulation of the above morphogenetic procedure by MT and AF array organization are reviewed. © New Phytologist (2005)

    The involvement of phospholipases C and D in the asymmetric division of subsidiary cell mother cells of Zea mays

    No full text
    In the present study, the involvement of phospholipase C and D (PLC and PLD) pathways in the asymmetric divisions that produce the stomatal complexes of Zea mays was investigated. In particular, the polar organization of microtubules (MTs) and actin filaments (AFs) and the process of asymmetric division were studied in subsidiary cell mother cells (SMCs) treated with PLC and PLD modulators. In SMCs treated with butanol-1 (but-1), which blocks phosphatidic acid (PA) production via PLDs, AF-patch formation laterally to the inducing guard cell mother cell (GMC) and the subsequent asymmetric division were inhibited. In these SMCs, cell division plane determination, as expressed by MT preprophase band (MT-PPB) formation, was not disturbed. Exogenously applied PA partially relieved the but-1 effects on SMCs. In contrast to SMCs, but-1 did not affect the symmetric GMC division. Inhibition of the PLC catalytic activity by neomycin or U73122 resulted in inhibition of asymmetric SMC division, while AF-patch and MT-PPB were organized as in control SMCs. These data show that the PLC and PLD signaling pathways are involved in the transduction and/or perception of the inductive stimulus that is emitted by the GMCs and induces the polar AF organization and asymmetric SMC division. In contrast, division plane determination in SMCs, as expressed by MT-PPB formation, does not depend on PLC and PLD signaling pathways. © 2008 Wiley-Liss, Inc

    The organization of F-actin in root tip cells of Adiantum capillus veneris throughout the cell cycle - A double label fluorescence microscopy study

    No full text
    The patterns of F-actin in relation to microtubule (Mt) organization in dividing root tip cells of Adiantum capillus veneris were studied with rhodamine-phalloidin (RP) labelling and tubulin immunofluorescence. Interphase cells display a well organized network of cortical/subcortical, endoplasmic and perinuclear actin filaments (AFs), not particularly related to the interphase Mt arrays. The cortical AFs seem to persist during the cell cycle while the large subcortical AF bundles disappear by preprophase/prophase and reappear after cytokinesis is completed. In some but not all of the preprophase cells the cortical AFs tend to form a band (AF-PPB) coincident with the preprophase band of Mts (Mt-PPB). In metaphase and anaphase cells AFs are localized in the cell cortex, around the spindle and inside it coincidently with kinetochore Mt bundles. During cytokinesis AFs are consistently found in the phragmoplast. In oryzalin treated cells neither Mt-PPBs, spindles and phragmoplasts exist, nor such F-actin structures can be observed. In cells recovering from oryzalin, AF-PPBs, &quot;AF kinetochore bundles&quot; and &quot;AF phragmoplasts&quot; reform. They show the same pattern with the reinstating respective Mt arrays. In contrast, in cells treated with cytochalasin B (CB), AFs disappear but all categories of Mt arrays form normally. These observations show that F-actin organization in root tip cells of A. capillus veneris differs from that of root tip cells of flowering plants examined so far. In addition, Mts seem to be crucial for F-actin organization as far as it concerns the PPB, the mitotic spindle, and the phragmoplast. © 1992 Springer-Verlag
    corecore