19 research outputs found

    Impact of minimal residual disease detection by next-generation flow cytometry in multiple myeloma patients with sustained complete remission after frontline therapy

    Get PDF
    Minimal residual disease (MRD) was monitored in 52 patients with sustained CR (≥2 years) after frontline therapy using next-generation flow (NGF) cytometry. 25% of patients initially MRD- reversed to MRD+. 56% of patients in sustained CR were MRD+; 45% at the level of 10−5; 17% at 10−6. All patients who relapsed during follow-up were MRD+ at the latest MRD assessment, including those with ultra-low tumor burden. MRD persistence was associated with specific phenotypic profiles: higher erythroblasts’ and tumor-associated monocytes/macrophages’ predominance in the bone marrow niche. NGF emerges as a suitable method for periodic, reproducible, highly-sensitive MRD-detection at the level of 10−6

    Peripheral Blood Immune Profiling of Convalescent Plasma Donors Reveals Alterations in Specific Immune Subpopulations Even at 2 Months Post SARS-CoV-2 Infection

    No full text
    Immune profiling of patients with COVID-19 has shown that SARS-CoV-2 causes severe lymphocyte deficiencies (e.g., lymphopenia, decreased numbers, and exhaustion of T cells) and increased levels of pro-inflammatory monocytes. Peripheral blood (PB) samples from convalescent plasma (CP) donors, COVID-19 patients, and control subjects were analyzed by multiparametric flow cytometry, allowing the identification of a wide panel of immune cells, comprising lymphocytes (T, B, natural killer (NK) and NKT cells), monocytes, granulocytes, and their subsets. Compared to active COVID-19 patients, our results revealed that the immune profile of recovered donors was restored for most subpopulations. Nevertheless, even 2 months after recovery, CP donors still had reduced levels of CD4+ T and B cells, as well as granulocytes. CP donors with non-detectable levels of anti-SARS-CoV-2-specific antibodies in their serum were characterized by higher Th9 and Th17 cells, which were possibly expanded at the expense of Th2 humoral immunity. The most noticeable alterations were identified in previously hospitalized CP donors, who presented the lowest levels of CD8+ regulatory T cells, the highest levels of CD56+CD16− NKT cells, and a promotion of a Th17-type phenotype, which might be associated with a prolonged pro-inflammatory response. A longer follow-up of CP donors will eventually reveal the time needed for full recovery of their immune system competence. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Recovery of Innate Immune Cells and Persisting Alterations in Adaptive Immunity in the Peripheral Blood of Convalescent Plasma Donors at Eight Months Post SARS-CoV-2 Infection

    No full text
    Persisting alterations and unique immune signatures have been previously detected in the peripheral blood of convalescent plasma (CP) donors at approximately two months after initial SARS-CoV-2 infection. This article presents the results on the sequential analysis of 47 CP donors at a median time of eight months (range 7.5–8.5 months) post infection, as assessed by flow cytometry. Interestingly, our results show a significant variation of the relevant immune subset composition among CP donors. Regarding innate immunity, both non-classical monocytes, and CD11b-granulocytes had fully recovered at eight months post COVID-19 infection. Intermediate monocytes and natural killer (NK) cells had already been restored at the two-month evaluation and remained stable. Regarding adaptive immunity, the COVID-19-related skewed Th1 and Th2 cell polarization remained at the same levels as in two months. However, low levels of total B cells were detected even after eight months from infection. A persisting reduction of CD8+ Tregs and changes in the NKT cell compartment were also remarkable. CP donors present with a unique immune landscape at eight months post COVID-19 infection, which is characterized by the notable restoration of the components of innate immunity along with a persisting imprint of SARS-CoV-2 in cells of the adaptive immunity. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
    corecore