27 research outputs found

    SKA2 regulated hyperactive secretory autophagy drives neuroinflammation-induced neurodegeneration

    Get PDF
    High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1β release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1β release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation

    A Fear-Inducing Odor Alters PER2 and c-Fos Expression in Brain Regions Involved in Fear Memory

    Get PDF
    Evidence demonstrates that rodents learn to associate a foot shock with time of day, indicating the formation of a fear related time-stamp memory, even in the absence of a functioning SCN. In addition, mice acquire and retain fear memory better during the early day compared to the early night. This type of memory may be regulated by circadian pacemakers outside of the SCN. As a first step in testing the hypothesis that clock genes are involved in the formation of a time-stamp fear memory, we exposed one group of mice to fox feces derived odor (TMT) at ZT 0 and one group at ZT 12 for 4 successive days. A separate group with no exposure to TMT was also included as a control. Animals were sacrificed one day after the last exposure to TMT, and PER2 and c-Fos protein were quantified in the SCN, amygdala, hippocampus, and piriform cortex. Exposure to TMT had a strong effect at ZT 0, decreasing PER2 expression at this time point in most regions except the SCN, and reversing the normal rhythm of PER2 expression in the amygdala and piriform cortex. These changes were accompanied by increased c-Fos expression at ZT0. In contrast, exposure to TMT at ZT 12 abolished the rhythm of PER2 expression in the amygdala. In addition, increased c-Fos expression at ZT 12 was only detected in the central nucleus of the amygdala in the TMT12 group. TMT exposure at either time point did not affect PER2 or c-Fos in the SCN, indicating that under a light-dark cycle, the SCN rhythm is stable in the presence of repeated exposure to a fear-inducing stimulus. Taken together, these results indicate that entrainment to a fear-inducing stimulus leads to changes in PER2 and c-Fos expression that are detected 24 hours following the last exposure to TMT, indicating entrainment of endogenous oscillators in these regions. The observed effects on PER2 expression and c-Fos were stronger during the early day than during the early night, possibly to prepare appropriate systems at ZT 0 to respond to a fear-inducing stimulus

    One-Way ANOVA (main effect of ZT).

    No full text
    <p>One-Way ANOVA (main effect of ZT).</p

    TMT exposure alters expression of PER2 and c-Fos in the BLA.

    No full text
    <p>TMT altered the rhythm and amount of expression of PER2 in the BLA resulting in significantly lower expression at ZT 0 for the TMT0 group and significantly higher expression at ZT 6 and ZT 12 for both experimental groups (A). TMT exposure also resulted in an increase of c-Fos expression at ZT 0 for both groups, with the increase for the TMT0 group significantly higher than the TMT12 group (B). Photomicrographs showing low amount of PER2 immunoreactivity in the BLA of a TMT 0 animal at ZT 0 (C) and normal amount of immunoreactivity the same timepoint for a TMT12 animal (D). Photomicrographs showing increased c-Fos expression at ZT 0 in the BLA of a TMT0 animal (E) and lower level of expression at ZT 0 in a TMT12 animal (F). *significantly different from control group at that time point (p<0.05) **significantly different from control and experimental group at that timepoint (p<0.05). The values for ZT 0 are repeated as ZT 24. Error bars represent standard errors.</p
    corecore