248 research outputs found
Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer
Nanotube patterning may occur naturally upon the spontaneous self-assembly of
biomolecules onto the surface of single-walled carbon nanotubes (SWNTs). It
results in periodically alternating bands of surface properties, ranging from
relatively hydrophilic to hydrophobic, along the axis of the nanotube. Single
Chain Mean Field (SCMF) theory has been used to estimate the free energy of
systems in which a surface patterned nanotube penetrates a phospholipid
bilayer. In contrast to un-patterned nanotubes with uniform surface properties,
certain patterned nanotubes have been identified that display a relatively low
and approximately constant system free energy (10 kT) as the nanotube traverses
through the bilayer. These observations support the hypothesis that the
spontaneous self-assembly of bio-molecules on the surface of SWNTs may
facilitate nanotube transduction through cell membranes.Comment: Published in ACS Nano http://pubs.acs.org/doi/abs/10.1021/nn102763
UK science press officers, professional vision and the generation of expectations
Science press officers can play an integral role in helping promote expectations and hype about biomedical research. Using this as a starting point, this article draws on interviews with 10 UK-based science press officers, which explored how they view their role as science reporters and as generators of expectations. Using Goodwin’s notion of ‘professional vision’, we argue that science press officers have a specific professional vision that shapes how they produce biomedical press releases, engage in promotion of biomedical research and make sense of hype. We discuss how these insights can contribute to the sociology of expectations, as well as inform responsible science communication.This project was funded by the Wellcome Trust (Wellcome Trust Biomedical Strategic Award 086034)
Cellular localization, accumulation and trafficking of double-walled carbon nanotubes in human prostate cancer cells
Carbon nanotubes (CNTs) are at present being considered as potential nanovectors with the ability to deliver therapeutic cargoes into living cells. Previous studies established the ability of CNTs to enter cells and their therapeutic utility, but an appreciation of global intracellular trafficking associated with their cellular distribution has yet to be described. Despite the many aspects of the uptake mechanism of CNTs being studied, only a few studies have investigated internalization and fate of CNTs inside cells in detail. In the present study, intracellular localization and trafficking of RNA-wrapped, oxidized double-walled CNTs (oxDWNT–RNA) is presented. Fixed cells, previously exposed to oxDWNT–RNA, were subjected to immunocytochemical analysis using antibodies specific to proteins implicated in endocytosis; moreover cell compartment markers and pharmacological inhibitory conditions were also employed in this study. Our results revealed that an endocytic pathway is involved in the internalization of oxDWNT–RNA. The nanotubes were found in clathrin-coated vesicles, after which they appear to be sorted in early endosomes, followed by vesicular maturation, become located in lysosomes. Furthermore, we observed co-localization of oxDWNT–RNA with the small GTP-binding protein (Rab 11), involved in their recycling back to the plasma membrane via endosomes from the trans-golgi network
Exploring the Immunotoxicity of Carbon Nanotubes
Mass production of carbon nanotubes (CNTs) and their applications in nanomedicine lead to the increased exposure risk of nanomaterials to human beings. Although reports on toxicity of nanomaterials are rapidly growing, there is still a lack of knowledge on the potential toxicity of such materials to immune systems. This article reviews some existing studies assessing carbon nanotubes’ toxicity to immune system and provides the potential mechanistic explanation
Carbon Nanotubes Enhance Cytotoxicity Mediated by Human Lymphocytes In Vitro
With the expansion of the potential applications of carbon nanotubes (CNT) in biomedical fields, the toxicity and biocompatibility of CNT have become issues of growing concern. Since the immune system often mediates tissue damage during pathogenesis, it is important to explore whether CNT can trigger cytotoxicity through affecting the immune functions. In the current study, we evaluated the influence of CNT on the cytotoxicity mediated by human lymphocytes in vitro. The results showed that while CNT at low concentrations (0.001 to 0.1 µg/ml) did not cause obvious cell death or apoptosis directly, it enhanced lymphocyte-mediated cytotoxicity against multiple human cell lines. In addition, CNT increased the secretion of IFN-γ and TNF-α by the lymphocytes. CNT also upregulated the NF-κB expression in lymphocytes, and the blockage of the NF-κB pathway reduced the lymphocyte-mediated cytotoxicity triggered by CNT. These results suggest that CNT at lower concentrations may prospectively initiate an indirect cytotoxicity through affecting the function of lymphocytes
FIB-SEM imaging of carbon nanotubes in mouse lung tissue
Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome to cut thin sample sections for TEM, can be challenging for investigation of regions with agglomerations of large and stiff CNTs because the CNTs cut with difficulty. As a consequence, the sectioning diamond knife may be damaged and the uncut CNTs are left protruding from the embedded block surface excluding them from TEM analysis. To provide an alternative to ultramicrotomy and subsequent TEM imaging, we studied focused ion beam scanning electron microscopy (FIB-SEM) of CNTs in the lungs of mice, and we evaluated the applicability of the method compared to TEM. FIB-SEM can provide serial section volume imaging not easily obtained with TEM, but it is time-consuming to locate CNTs in the tissue. We demonstrate that protruding CNTs after ultramicrotomy can be used to locate the region of interest, and we present FIB-SEM images of CNTs in lung tissue. FIB-SEM imaging was applied to lung tissue from mice which had been intratracheally instilled with two different multiwalled CNTs; one being short and thin, and the other longer and thicker. FIB-SEM was found to be most suitable for detection of the large CNTs (Ø ca. 70 nm), and to be well suited for studying CNT agglomerates in biological samples which is challenging using standard TEM techniques. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00216-013-7566-x) contains supplementary material, which is available to authorized users
Binding of carbon nanotube to BMP receptor 2 enhances cell differentiation and inhibits apoptosis via regulating bHLH transcription factors
Biomaterials that can drive stem cells to an appropriate differentiation level and decrease apoptosis of transplanted cells are needed in regenerative medicine. Nanomaterials are promising novel materials for such applications. Here we reported that carboxylated multiwalled carbon nanotube (MWCNT 1) promotes myogenic differentiation of mouse myoblast cells and inhibits cell apoptosis under the differentiation conditions by regulating basic helix-loop-helix transcription factors. MWCNT 1 attenuates bone morphogenetic protein receptor (BMPR) signaling activity by binding to BMPR2 and attenuating the phosphorylation of BMPR1. This molecular understanding allowed us to tune stem cell differentiation to various levels by chemical modifications, demonstrating human control of biological activities of nanoparticles and opening an avenue for potential applications of nanomaterials in regenerative medicine
Water-Soluble Fullerene (C60) Derivatives as Nonviral Gene-Delivery Vectors
A new class of water-soluble C60 transfecting agents has been prepared using Hirsch-Bingel chemistry and assessed for their ability to act as gene-delivery vectors in vitro. In an effort to elucidate the relationship between the hydrophobicity of the fullerene core, the hydrophilicity of the water-solubilizing groups, and the overall charge state of the C60 vectors in gene delivery and expression, several different C60 derivatives were synthesized to yield either positively charged, negatively charged, or neutral chemical functionalities under physiological conditions. These fullerene derivatives were then tested for their ability to transfect cells grown in culture with DNA carrying the green fluorescent protein (GFP) reporter gene. Statistically significant expression of GFP was observed for all forms of the C60 derivatives when used as DNA vectors and compared to the ability of naked DNA alone to transfect cells. However, efficient in vitro transfection was only achieved with the two positively charged C60 derivatives, namely, an octa-amino derivatized C60 and a dodeca-amino derivatized C60 vector. All C60 vectors showed an increase in toxicity in a dose-dependent manner. Increased levels of cellular toxicity were observed for positively charged C60 vectors relative to the negatively charged and neutral vectors. Structural analyses using dynamic light scattering and optical microscopy offered further insights into possible correlations between the various derivatized C60 compounds, the C60 vector/DNA complexes, their physical attributes (aggregation, charge) and their transfection efficiencies. Recently, similar Gd@C60-based compounds have demonstrated potential as advanced contrast agents for magnetic resonance imaging (MRI). Thus, the successful demonstration of intracellular DNA uptake, intracellular transport, and gene expression from DNA using C60 vectors suggests the possibility of developing analogous Gd@C60-based vectors to serve simultaneously as both therapeutic and diagnostic agents
Cetuximab plus platinum-based chemotherapy in head and neck Squamous Cell Carcinoma: a retrospective study in a single Comprehensive European Cancer Institution
Background: The use of cetuximab in combination with platinum (P) plus 5-fluorouracil (F) has previously been demonstrated to be effective in the treatment of metastatic squamous cell cancer of head and neck (SCCHN). We investigated the efficacy and outcome of this protocol as a first-line treatment for patients with recurrent or metastatic disease. We evaluated overall-survival (OS), progression-free-survival (PFS), overall response rate (ORR) and the treatment toxicity profile in a retrospective cohort. Patients and Methods: This study enrolled 121 patients with untreated recurrent or metastatic SCCHN. The patients received PF+ cetuximab every 3 weeks for a maximum of 6 cycles. Patients with stable disease who received PF+ cetuximab continued to receive cetuximab until disease progressed or unacceptable toxic effects were experienced, whichever occurred first. Results: The median patient age was 53 (37-78) years. The patient cohort was 86.8% male. The addition of cetuximab to PF in the recurrent or metastatic setting provided an OS of 11 months (Confidential Interval, CI, 95%, 8.684-13.316) and PFS of 8 months (CI 95%, 6.051-9.949). The disease control rate was 48.9%, and the ORR was 23.91%. The most common grade 3 or 4 adverse events in the PF+ cetuximab regimen were febrile neutropenia (5.7%), skin rash (3.8%) and mucosistis (3.8%). Conclusions: The results of this study suggest that cetuximab plus platinum-fluorouracil chemotherapy is a good option for systemic treatment in advanced SSCHN patients. This regimen has a well-tolerated toxicity profile.info:eu-repo/semantics/publishedVersio
- …