1,324 research outputs found

    Probability distribution function of dipolar field in two-dimensional spin ensemble

    Full text link
    We theoretically determine the probability distribution function of the net field of the random planar structure of dipoles which represent polarized particles. At small surface concentrations c of the point dipoles this distribution is expressed in terms of special functions. At the surface concentrations of the dipoles as high as 0.6 the dipolar field obey the Gaussian law. To obtain the distribution function within transitional region c<0.6, we propose the method based on the cumulant expansion. We calculate the parameters of the distributions for some specific configurations of the dipoles. The distribution functions of the ordered ensembles of the dipoles at the low and moderate surface concentrations have asymmetric shape with respect to distribution medians. The distribution functions allow to calculate various physical parameters of two-dimensional interacting nanoparticle ensembles.Comment: 9 pages, 3 figure

    Total Quantum Zeno Effect beyond Zeno Time

    Full text link
    In this work we show that is possible to obtain Total Quantum Zeno Effect in an unstable systems for times larger than the correlation time of the bath. The effect is observed for some particular systems in which one can chose appropriate observables which frequent measurements freeze the system into the initial state. For a two level system in a squeezed bath one can show that there are two bath dependent observables displaying Total Zeno Effect when the system is initialized in some particular states. We show also that these states are intelligent states of two conjugate observables associated to the electromagnetic fluctuations of the bath.Comment: 6 pages, 3 figures, Contributed to Quantum Optics III, Pucon, Chile, November 200

    Total Quantum Zeno effect and Intelligent States for a two level system in a squeezed bath

    Get PDF
    In this work we show that by frequent measurements of adequately chosen observables, a complete suppression of the decay in an exponentially decaying two level system interacting with a squeezed bath is obtained. The observables for which the effect is observed depend on the the squeezing parameters of the bath. The initial states which display Total Zeno Effect are intelligent states of two conjugate observables associated to the electromagnetic fluctuations of the bath.Comment: 5 pages, 3 figure

    Boolean algebras and classification of interactions in sufficient-component cause model

    Full text link
    A mathematical model of the sufficient-component cause framework is considered based on the theories of Boolean algebra. The model consists of the space of states of a binary experiment and a set of symmetries of the experiment. The space of states is a Boolean algebra of n Boolean variables where n is the number of the binary causes in the experiment. The set of symmetries of the experiment is a subgroup of the group of all automorphisms of Boolean algebra of the states of experiment. This subgroup is generated by transformations preserving a type of interaction. An experimenter should deduce these transformations from the peculiar properties of the experiment. Examples of such transformations are provided. Classification of interactions is obtained by the calculation of the orbits of action of the group of symmetries on the space of states of the experiment. It is shown that the classification of the interaction for the ordinary symmetries of sufficient causes is the same as reported in related works. Other symmetries of the binary experiment are considered as well. It is shown that the corresponding classification of the interaction types in a binary experiment depends substantially on the symmetries of the experiment. Statistical criteria of particular types of responses are proven and the problem of mutual antagonism is discussed in the Appendix. © 2015 Academic Publications, Ltd

    On closed rotating worlds

    Get PDF
    A new solution for the stationary closed world with rigid rotation is obtained for the spinning fluid source. It is found that the spin and vorticity are locally balanced. This model qualitatively shows that the local rotation of the cosmological matter can be indeed related to the global cosmic vorticity, provided the total angular momentum of the closed world is vanishing.Comment: 10 pages, Revtex, to appear in Phys. Rev. D6

    Analysis of ecopsychological types of interactions in medical institution environment

    Get PDF
    The study is based on the intersection of ecopsychological and subjective approaches and devoted to the research of psychological conditions for interaction of medical personnel in medical institution environmen

    Energy dependence of Ti/Fe ratio in the Galactic cosmic rays measured by the ATIC-2 experiment

    Get PDF
    Titanium is a rare, secondary nucleus among Galactic cosmic rays. Using the Silicon matrix in the ATIC experiment, Titanium has been separated. The energy dependence of the Ti to Fe flux ratio in the energy region from 5 GeV per nucleon to about 500 GeV per nucleon is presented.Comment: 8 pages, 4 figures, accepted for publication in Astronomy Letter

    Telescopic actions

    Get PDF
    A group action H on X is called "telescopic" if for any finitely presented group G, there exists a subgroup H' in H such that G is isomorphic to the fundamental group of X/H'. We construct examples of telescopic actions on some CAT[-1] spaces, in particular on 3 and 4-dimensional hyperbolic spaces. As applications we give new proofs of the following statements: (1) Aitchison's theorem: Every finitely presented group G can appear as the fundamental group of M/J, where M is a compact 3-manifold and J is an involution which has only isolated fixed points; (2) Taubes' theorem: Every finitely presented group G can appear as the fundamental group of a compact complex 3-manifold.Comment: +higher dimension

    Nematic twist-bend phase with nanoscale modulation of molecular orientation

    Get PDF
    A state of matter in which molecules show a long-range orientational order and no positional order is called a nematic liquid crystal. The best known and most widely used (for example, in modern displays) is the uniaxial nematic, with the rod-like molecules aligned along a single axis, called the director. When the molecules are chiral, the director twists in space, drawing a right-angle helicoid and remaining perpendicular to the helix axis; the structure is called a chiral nematic. Here using transmission electron and optical microscopy, we experimentally demonstrate a new nematic order, formed by achiral molecules, in which the director follows an oblique helicoid, maintaining a constant oblique angle with the helix axis and experiencing twist and bend. The oblique helicoids have a nanoscale pitch. The new twist-bend nematic represents a structural link between the uniaxial nematic (no tilt) and a chiral nematic (helicoids with right-angle tilt)

    Design and Investigation of de Vries Liquid Crystals Based on 5-Phenyl-Pyrimidine and (R,R)-2,3-Epoxyhexoxy backbone.

    Get PDF
    Calamitic liquid crystals based on 5-phenyl-pyrimidine derivatives have been designed, synthesized, and characterized. The 5-phenyl pyrimidine core was functionalized with a chiral (R,R)-2,3-epoxyhexoxy chain on one side and either siloxane or perfluoro terminated chains on the opposite side. The one involving a perfluorinated chain shows SmA^{*} phase over a wide temperature range of 82 °C, whereas the siloxane analog exhibits both SmA^{*} and SmC^{*} phases over a broad range of temperatures, and a weak first-order SmA^{*}-SmC^{*} transition is observed. For the siloxane analog, the reduction factor for the layer shrinkage R (relative to its thickness at the SmA^{*}-SmC^{*} transition temperature, T_{AC}) is ∼0.373, and layer shrinkage is 1.7% at a temperature of 13 °C below the T_{AC}. This compound is considered to have de Vries smectic characteristics with the de Vries coefficient C_{deVries} of ∼0.86 on the scale of zero (maximum-layer shrinkage) to 1 (zero-layer shrinkage). A three-parameter mean-field model is introduced for the orientational distribution function (ODF) to reproduce the electro-optic properties. This model explains the experimental results and leads to the ODF, which exhibits a crossover from the sugar-loaf to diffuse-cone ODF some 3 °C above T_{AC}
    corecore