8 research outputs found

    Optical terabit transmitter and receiver based on passive polymer and InP technology for high-speed optical connectivity between datacenters

    Get PDF
    We demonstrate the hybrid integration of a multi-format tunable transmitter and a coherent optical receiver based on optical polymers and InP electronics and photonics for next generation metro and core optical networks. The transmitter comprises an array of two InP Mach-Zehnder modulators (MZMs) with 42 GHz bandwidth and two passive PolyBoards at the back- and front-end of the device. The back-end PolyBoard integrates an InP gain chip, a Bragg grating and a phase section on the polymer substrate capable of 22 nm wavelength tunability inside the C-band and optical waveguides that guide the light to the inputs of the two InP MZMs. The front-end PolyBoard provides the optical waveguides for combing the In-phase and Quadrature-phase modulated signals via an integrated thermo-optic phase shifter for applying the pi/2 phase-shift at the lower arm and a 3-dB optical coupler at the output. Two InP-double heterojunction bipolar transistor (InP-DHBT) 3-bit power digital-to-analog converters (DACs) are hybridly integrated at either side of the MZM array chip in order to drive the IQ transmitter with QPSK, 16-QAM and 64-QAM encoded signals. The coherent receiver is based on the other side on a PolyBoard, which integrates an InP gain chip and a monolithic Bragg grating for the formation of the local oscillator laser, and a monolithic 90° optical hybrid. This PolyBoard is further integrated with a 4-fold InP photodiode array chip with more than 80 GHz bandwidth and two high-speed InP-DHBT transimpedance amplifiers (TIAs) with automatic gain control. The transmitter and the receiver have been experimentally evaluated at 25Gbaud over 100 km for mQAM modulation showing bit-error-rate (BER) performance performance below FEC limit

    Novel Benes Network Routing Algorithm and Hardware Implementation

    No full text
    Benes/Clos networks constitute a particularly important part of interconnection networks and have been used in numerous areas, such as multi-processor systems, data centers and on-chip networks. They have also attracted great interest in the field of optical communications due to the increasing popularity of optical switches based on these architectures. There are numerous algorithms aimed at routing these types of networks, with varying degrees of utility. Linear algorithms, such as Sun Tsu and Opferman, were historically the first attempt to standardize the routing procedure of this types of networks. They require matrix-based calculations, which are very demanding in terms of resources and in some cases involve backtracking, which impairs their efficiency. Parallel solutions, such as Lee’s algorithm, were introduced later and provide a different answer that satisfy the requirements of high-performance networks. They are, however, extremely complex and demand even more resources. In both cases, hardware implementations reflect their algorithmic characteristics. In this paper, we attempt to design an algorithm that is simple enough to be implemented on a small field programmable gate array board while simultaneously efficient enough to be used in practical scenarios. The design itself is of a generic nature; therefore, its behavior across different sizes (8 × 8, 16 × 16, 32 × 32, 64 × 64) is examined. The platform of implementation is a medium range FPGA specifically selected to represent the average hardware prototyping device. In the end, an overview of the algorithm’s imprint on the device is presented alongside other approaches, which include both hard and soft computing techniques

    Multi-Rate and Multi-Channel Optical Equalizer Based on Photonic Integration

    No full text
    We propose and experimentally demonstrate a photonic integrated circuit (PIC) that operates as an optical equalizer (OE) with multi-rate and multi-channel capability. The OE has the structure of a 3-tap direct form finite impulse response (FIR) filter and is based on the use of micro-ring resonators (MRRs) for the tuning of its delay lines. The PIC is fabricated on TriPleX platform and has 17 reconfigurable elements in total including nine MRRs, five optical couplers and three standalone phase shifters. Using this OE in an on-off keying system with bandwidth limitations we achieve an eye-diagram opening improvement more than 14 dB working with signals at 4.67 and 5.84 Gbaud both in single- and dual-channel operation. Extension to higher modulation formats is direct. Extension to higher symbol rates is also possible via the use of smaller MRRs

    On the Fly All-Optical Packet Switching Using Hybrid WDM/OCDMA Labeling

    No full text
    International audience<p>We introduce a novel design of an all-optical packet routing node that allows for the selection and forwarding of optical packets based on the routing information contained in hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) labels. A stripping paradigm of optical code-label is adopted. The router is built around an optical-code gate that consists in an optical flip–flop controlled by two fiber Bragg grating correlators and is combined with a Mach–Zehnder interferometer (MZI)-based forwarding gate. We experimentally verify the proof-of-principle operation of the proposed self-routing node under NRZ and OCDMA packet traffic conditions. The successful switching of elastic NRZ payload at 40 Gb/s controlled by DS-OCDMA coded labels and the forwarding operation of encoded data using EQC codes are presented. Proper auto-correlation functions are obtained with higher than 8.1 dB contrast ratio, suitable to efficiently trigger the latching device with a contrast ratio of 11.6 dB and switching times below 3.8 ns. Error-free operation is achieved with 1.5 dB penalty for 40 Gb/s NRZ data and with 2.1 dB penalty for DS-OCDMA packets. The scheme can further be applied to large-scale optical packet switching networks by exploiting efficient optical coders allocated at different WDM channels.</p

    Hybrid Photonic Integration on a Polymer Platform

    No full text
    To fulfill the functionality demands from the fast developing optical networks, a hybrid integration approach allows for combining the advantages of various material platforms. We have established a polymer-based hybrid integration platform (polyboard), which provides flexible optical input/ouptut interfaces (I/Os) that allow robust coupling of indium phosphide (InP)-based active components, passive insertion of thin-film-based optical elements, and on-chip attachment of optical fibers. This work reviews the recent progress of our polyboard platform. On the fundamental level, multi-core waveguides and polymer/silicon nitride heterogeneous waveguides have been fabricated, broadening device design possibilities and enabling 3D photonic integration. Furthermore, 40-channel optical line terminals and compact, bi-directional optical network units have been developed as highly functional, low-cost devices for the wavelength division multiplexed passive optical network. On a larger scale, thermo-optic elements, thin-film elements and an InP gain chip have been integrated on the polyboard to realize a colorless, dual-polarization optical 90° hybrid as the frontend of a coherent receiver. For high-end applications, a wavelength tunable 100Gbaud transmitter module has been demonstrated, manifesting the joint contribution from the polyboard technology, high speed polymer electro-optic modulator, InP driver electronics and ceramic electronic interconnects

    Integrated heterodyne laser Doppler vibrometer based on stress-optic frequency shift in silicon nitride

    No full text
    Abstract We demonstrate a compact heterodyne Laser Doppler Vibrometer (LDV) based on the realization of optical frequency shift in the silicon nitride photonic integration platform (TriPleX). We theoretically study, and experimentally evaluate two different photonic integrated optical frequency shifters (OFSs), utilizing serrodyne and single-sideband (SSB) modulation. Both OFSs employ stress-optic modulators (SOMs) based on the non-resonant piezoelectrical actuation of lead zirconate titanate (PZT) thin-films, deposited on top of the silicon nitride waveguides with a wafer-scale process. To improve the modulation bandwidth of the SOMs we investigate a novel configuration of the electrodes used for the actuation, where both electrodes are placed on top of the PZT layer. Using this top-top electrode configuration we report frequency shift of 100 kHz and 2.5 MHz, and suppression ratio of the unwanted sidebands of 22.1 dB and 39 dB, using the serrodyne and the SSB OFS, respectively. The best performing SOM structure induces 0.25π peak-to-peak sinusoidal phase-shift with 156 mW power dissipation at 2.5 MHz. We use the SSB-OFS in our compact LDV system to demonstrate vibration measurements in the kHz regime. The system comprises a dual-polarization coherent detector built in the PolyBoard platform, utilizing hybrid integration of InP photodiodes (PDs). High quality LDV performance with measurement of vibration frequencies up to several hundreds of kHz and displacement resolution of 10 pm are supported with our system
    corecore