101 research outputs found

    Mars Regolith Simulant Ameliorated by Compost as In Situ Cultivation Substrate Improves Lettuce Growth and Nutritional Aspects

    Get PDF
    Heavy payloads in future shuttle journeys to Mars present limiting factors, making self-sustenance essential for future colonies. Therefore, in situ resources utilization (ISRU) is the path to successful and feasible space voyages. This research frames the concept of planting leafy vegetables on Mars regolith simulant, ameliorating this substrate’s fertility by the addition of organic residues produced in situ. For this purpose, two butterhead lettuce (Lactuca sativa L. var. capitata) cultivars (green and red Salanova®) were chosen to be cultivated in four dierent mixtures of MMS-1 Mojave Mars simulant:compost (0:100, 30:70, 70:30 and 100:0; v:v) in a phytotron open gas exchange growth chamber. The impact of compost rate on both crop performance and the nutritive value of green- and red-pigmented cultivars was assessed. The 30:70 mixture proved to be optimal in terms of crop performance, photosynthetic activity, intrinsic water use eciency and quality traits of lettuce. In particular, red Salanova® showed the best performance in terms of these quality traits, registering 32% more phenolic content in comparison to 100% simulant. Nonetheless, the 70:30 mixture represents a more realistic scenario when taking into consideration the sustainable use of compost as a limited resource in space farming, while still accepting a slight significant decline in yield and quality in comparison to the 30:70 mixture

    Biochemical, Physiological and Anatomical Mechanisms of Adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl2 Salinization

    Get PDF
    Callistemon citrinus and Viburnum lucidum are very appreciated and widespread ornamental shrubs for their abundant flowering and/or brilliant foliage. The intrinsic tolerance to drought/salinity supports their use in urban areas and in xeriscaping. Despite adaptive responses of these ornamental species to sodium chloride (NaCl) have been extensively explored, little is known on the effects of other salt solution, yet iso-osmotic, on their growth, mineral composition and metabolism. The present research aimed to assess responses at the biochemical, physiological and anatomical levels to iso-osmotic salt solutions of NaCl and CaCl2 to discriminate the effects of osmotic stress and ion toxicity. The two ornamental species developed different salt-tolerance mechanisms depending on the salinity sources. The growth parameters and biomass production decreased under salinization in both ornamental species, independently of the type of salt, with a detrimental effect of CaCl2 on C. citrinus. The adaptive mechanisms adopted by the two ornamental species to counteract the NaCl salinity were similar, and the decline in growth was mostly related to stomatal limitations of net CO2 assimilation rate, together with the reduction in leaf chlorophyll content (SPAD index). The stronger reduction of C. citrinus growth compared to V. lucidum, was due to an exacerbated reduction in net photosynthetic rate, driven by both stomatal and non stomatal limitations. In similar conditions, V. lucidum exhibited other additional adaptive response, such as modification in leaf functional anatomical traits, mostly related to the reduction in the stomata size allowing plants a better control of stomata opening than in C. citrinus. However, C. citrinus plants displayed an increased ability to retain higher Cl- levels in leaves than in roots under CaCl2 salinity compared to V. lucidum, thus, indicating a further attempt to counteract chloride toxicity through an increased vacuolar compartmentalization and to take advantages of them as chip osmotica

    Ontogenetic variation in the mineral, phytochemical and yield attributes of brassicaceous microgreens

    Get PDF
    Microgreens constitute novel gastronomic ingredients that combine visual, kinesthetic and bioactive qualities. The definition of the optimal developmental stage for harvesting microgreens remains fluid. Their superior phytochemical content against mature leaves underpins the current hypothesis of significant changes in compositional profile during the brief interval of ontogeny from the appearance of the first (S1) to the second true leaf (S2). Microgreens of four brassicaceous genotypes (Komatsuna, Mibuna, Mizuna and Pak Choi) grown under controlled conditions and harvested at S1 and S2 were appraised for fresh and dry yield traits. They were further analyzed for macro-and micromineral content using inductively coupled plasma optical emission spectrometry (ICP-OES), carotenoid content using high-performance liquid chromatography with a diode-array detector (HPLC-DAD), volatile organic compounds using solid-phase microextraction followed by gas chromatography-mass spectrometry (SPME-GC/MS), anthocyanins and polyphenols using liquid chromatography-high resolution-tandem mass spectrometry (LC-MS/MS) with Orbitrap technology and for chlorophyll and ascorbate concentrations, well as antioxidant capacity by spectrophotometry. Analysis of compositional profiles revealed genotype as the principal source of variation for all constituents. The response of mineral and phytochemical composition and of antioxidant capacity to the growth stage was limited and largely genotype-dependent. It is, therefore, questionable whether delaying harvest from S1 to S2 would significantly improve the bioactive value of microgreens while the cost-benefit analysis for this decision must be genotype-specific. Finally, the lower-yielding genotypes (Mizuna and Pak Choi) registered higher relative increase in fresh yield between S1 and S2, compared to the faster-growing and higher-yielding genotypes. Although the optimal harvest stage for specific genotypes must be determined considering the increase in yield against reduction in crop turnover, harvesting at S2 seems advisable for the lower-yielding genotypes

    Sweet basil functional quality as shaped by genotype and macronutrient concentration reciprocal action

    Get PDF
    Basil (Ocimum basilicum L.) is among the most widespread aromatic plants due to its versatility of use and its beneficial health properties. This aromatic plant thrives in hydroponics, which is a valid tool to improve the production and functional quality of crops, but nevertheless, it offers the possibility to de-seasonalize production. A floating raft system was adopted to test the production and quality potential during autumn season of three different genotypes of Genovese basil (Aroma 2, Eleonora and Italiano Classico) grown in three nutrient solutions with crescent electrical conductivity (EC: 1, 2 and 3 dS m−1). The aromatic and phenolic profiles were determined by GC/MS and HPLC analysis, respectively. The combination Aroma 2 and the EC 2 dS m−1 resulted in the highest production, both in terms of fresh weight and dry biomass. The 2 dS m−1 treatment determined the major phenolic content, 44%, compared to the other two EC. Italiano Classico showed a higher total polyphenolic content in addition to a different aromatic profile compared to the other cultivars, characterized by a higher percentage of Eucalyptol (+37%) and Eugenol (+107%) and a lower percentage of linalool (−44%). Correct management of the nutritional solution combined with adequate genetic material managed an improvement in the production and the obtainment of the desired aromatic and phenolic profiles

    Morpho-Metric and Specialized Metabolites Modulation of Parsley Microgreens through Selective LED Wavebands

    Get PDF
    Plant factories and high-tech greenhouses offer the opportunity to modulate plant growth, morphology and qualitative content through the management of artificial light (intensity, photoperiod and spectrum). In this study, three Light Emitting Diode (LED) lighting systems, with blue (B, 460 nm), red (R, 650 nm) and mixed red + green-yellow + blue (RGB) light were used to grow parsley microgreens to understand how light quality could change the phenotype and the profile of secondary metabolites. Plants showed altered morphological characteristics and higher amounts of secondary metabolites under RGB LEDs treatment. The results demonstrated that microgreens under red light showed the highest fresh yield, petiole length, coumaric acid content but also the highest nitrate content. Plants under RGB light showed the highest dry matter percentage and highest content of total and single polyphenols content, while blue light showed the highest ascorbic acid and ABTS antioxidant activity. Moreover, microgreens under red light showed more compact leaves with less intercellular spaces, while under blue and RGB light, the leaves displayed ticker spongy mesophyll with higher percentage of intercellular spaces. Therefore, the specific spectral band was able to modify not only the metabolic profile, but also it could modulate the differentiation of mesophyll cells. Light quality as a preharvest factor helps to shape the final parsley microgreens product as a whole, not only in terms of yield and quality, but also from a morpho-anatomical point of vie

    Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach

    Get PDF
    Plant-derived protein hydrolysates (PHs) are gaining prominence as biostimulants due to their potential to improve yield and nutritional quality even under suboptimal nutrient regimens. In this study, we investigated the effects of foliar application of a legume-derived PH (0 or 4 ml L−1) on greenhouse baby spinach (Spinacia oleracea L.) under four nitrogen (N) fertilization levels (0, 15, 30, or 45 kg ha−1) by evaluating morphological and colorimetric parameters, mineral composition, carbohydrates, proteins, and amino acids. The fresh yield in untreated and biostimulant-treated spinach plants increased in response to an increase in N fertilization from 1 up to 30 kg ha−1, reaching a plateau thereafter indicating the luxury consumption of N at 45 kg ha−1. Increasing N fertilization rate, independently of PH, lead to a significant increase of all amino acids with the exception of alanine, GABA, leucine, lysine, methionine, and ornithine but decreased the polyphenols content. Interestingly, the fresh yield at 0 and 15 kg ha−1 was clearly greater in PH-treated plants compared to untreated plants by 33.3% and 24.9%, respectively. This was associated with the presence in of amino acids and small peptides PH ‘Trainer®’, which act as signaling molecules eliciting auxin- and/or gibberellin-like activities on both leaves and roots and thus inducing a “nutrient acquisition response” that enhances nutrients acquisition and assimilation (high P, Ca, and Mg accumulation) as well as an increase in the photochemical efficiency and activity of photosystem II (higher SPAD index). Foliar applications of the commercial PH decreased the polyphenols content, but on the other hand strongly increased total amino acid content (+45%, +82%, and +59% at 0, 15, and 30 kg ha−1, respectively) but not at a 45-kg ha−1-rate. Overall, the use of PH could represent a sustainable tool for boosting yield and nitrogen use efficiency and coping with soil fertility problems under low input regimens

    Il contesto infrastrutturale siciliano e il quadro normativo di riferimento

    No full text
    Il volume intende illustrare il tema della sicurezza stradale nelle sue molteplici dimensioni e in maniera trasversale, con uno specifico approfondimento per la Sicilia, mettendo a disposizione un'ampia selezione di informazioni qualitative e quantitative per specifiche analisi sulla sicurezza stradale, utili ai policy maker per intraprendere azioni di programmazione a livello locale. L'Italia registra un elevato tasso di mortalità rispetto alla media europea, una lenta riduzione del numero di vittime per incidente stradale e marcati divari territoriali. Nel contesto nazionale questo studio descrive poi l'evoluzione del fenomeno dell'incidentalità in Sicilia nell'ultimo decennio, individuando puntualmente tempi, mezzi, soggetti, luoghi e modalità degli incidenti sino a livello provinciale; si analizzano inoltre, con un approccio valutativo, le principali variabili che influenzano l'evoluzione del fenomeno, tra cui il contesto infrastrutturale, quello normativo e programmatico nonché la componente psicologica e social
    corecore