4 research outputs found

    Triplet-charge annihilation in a small molecule donor: acceptor blend as a major loss mechanism in organic photovoltaics

    Get PDF
    Organic photovoltaics (OPV) are close to reaching a landmark 20% device efficiency. One of the proposed reasons that OPVs have yet to attain this milestone is their propensity toward triplet formation. Herein, a small molecule donor, DRCN5T, is studied using a variety of morphology and spectroscopy techniques, and blended with both fullerene and non-fullerene acceptors. Specifically, grazing incidence wide-angle X-ray scattering and transient absorption, Raman, and electron paramagnetic resonance spectroscopies are focused on. It is shown that despite DRCN5T's ability to achieve OPV efficiencies of over 10%, it generates an unusually high population of triplets. These triplets are primarily formed in amorphous regions via back recombination from a charge transfer state, and also undergo triplet-charge annihilation. As such, triplets have a dual role in DRCN5T device efficiency suppression: they both hinder free charge carrier formation and annihilate those free charges that do form. Using microsecond transient absorption spectroscopy under oxygen conditions, this triplet-charge annihilation (TCA) is directly observed as a general phenomenon in a variety of DRCN5T: fullerene and non-fullerene blends. Since TCA is usually inferred rather than directly observed, it is demonstrated that this technique is a reliable method to establish the presence of TCA

    Synthesis and investigation of donor-porphyrin-acceptor triads with long-lived photo-induced charge-separate states

    No full text
    The authors thank the EPSRC for funding (grants EP/I035536/1 and EP/J015067/1). B. W. L. and R. G. B. acknowledge the DARPA QuBE program for financial support.Two donor-porphyrin-acceptor triads have been synthesized using a versatile Suzuki-coupling route. This synthetic strategy allows the powerful donor tetraalkylphenylenediamine (TAPD) to be introduced into tetraarylporphyrin-based triads without protection. The thermodynamics and kinetics of electron transfer in the new triads are compared with a previously reported octaalkyldiphenyl-porphyrin triad exhibiting a long-lived spin-polarized charge separate state (CSS), from theoretical and experimental perspectives, in both fluid solution and in a frozen solvent glass. We show that the less favorable oxidation potential of the tetraaryl-porphyrin core can be offset by using C, as a better electron-acceptor than triptycenenaphthoquinone (TNQ). The C-porphyrin-TAPD triad gives a spin-polarized charge-separated state that can be observed by EPR-spectroscopy, with a mean lifetime of 16 ms at 10 K, which is longer than in the previously reported TNQ-porphyrin-TAPD triad, following the predicted trend from calculated charge-recombination rates.Publisher PDFPeer reviewe

    Acanthamoeba Keratitis: Current Status and Urgent Research Priorities

    No full text
    corecore