455 research outputs found

    Inter-rater reliability of three standardized functional tests in patients with low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Of all patients with low back pain, 85% are diagnosed as "non-specific lumbar pain". Lumbar instability has been described as one specific diagnosis which several authors have described as delayed muscular responses, impaired postural control as well as impaired muscular coordination among these patients. This has mostly been measured and evaluated in a laboratory setting. There are few standardized and evaluated functional tests, examining functional muscular coordination which are also applicable in the non-laboratory setting. In ordinary clinical work, tests of functional muscular coordination should be easy to apply. The aim of this present study was to therefore standardize and examine the inter-rater reliability of three functional tests of muscular functional coordination of the lumbar spine in patients with low back pain.</p> <p>Methods</p> <p>Nineteen consecutive individuals, ten men and nine women were included. (Mean age 42 years, SD ± 12 yrs). Two independent examiners assessed three tests: "single limb stance", "sitting on a Bobath ball with one leg lifted" and "unilateral pelvic lift" on the same occasion. The standardization procedure took altered positions of the spine or pelvis and compensatory movements of the free extremities into account. The inter-rater reliability was analyzed by Cohen's kappa coefficient (Îș) and by percentage agreement.</p> <p>Results</p> <p>The inter-rater reliability for the right and the left leg respectively was: for the single limb stance very good (Îș: 0.88–1.0), for sitting on a Bobath ball good (Îș: 0.79) and very good (Îș: 0.88) and for the unilateral pelvic lift: good (Îș: 0.61) and moderate (Îș: 0.47).</p> <p>Conclusion</p> <p>The present study showed good to very good inter-rater reliability for two standardized tests, that is, the single-limb stance and sitting on a Bobath-ball with one leg lifted. Inter-rater reliability for the unilateral pelvic lift test was moderate to good. Validation of the tests in their ability to evaluate lumbar stability is required.</p

    Biomechanical experimental data curation: an example for main lumbar spine ligaments characterization for a MBS spine model

    Get PDF
    Series : Mechanisms and machine science, ISSN 2211-0984, vol. 24This work overviews an extensive analysis in the context of mechanical characterization of human biomaterials, carried out over a broad set of published experimental data. Focused on main lumbar spine ligaments, several test procedures are exhaustively analyzed, in order to identify possible causes for divergences that have been found in some results. Moreover, guidelines are proposed for da-ta filtering and selection. The main objective of the task was to retrieve trustworthy inputs to a hybrid Finite Element Analysis / Multibody System dynamic simulation model of the human intervertebral disc, which can be used on the prediction of nucleus prosthetics working performance

    Attainment rate as a surrogate indicator of the intervertebral neutral zone length in lateral bending: An in vitro proof of concept study

    Get PDF
    Background Lumbar segmental instability is often considered to be a cause of chronic low back pain. However, defining its measurement has been largely limited to laboratory studies. These have characterised segmental stability as the intrinsic resistance of spine specimens to initial bending moments by quantifying the dynamic neutral zone. However these measurements have been impossible to obtain in vivo without invasive procedures, preventing the assessment of intervertebral stability in patients. Quantitative fluoroscopy (QF), measures the initial velocity of the attainment of intervertebral rotational motion in patients, which may to some extent be representative of the dynamic neutral zone. This study sought to explore the possible relationship between the dynamic neutral zone and intervertebral rotational attainment rate as measured with (QF) in an in vitro preparation. The purpose was to find out if further work into this concept is worth pursuing. Method This study used passive recumbent QF in a multi-segmental porcine model. This assessed the intrinsic intervertebral responses to a minimal coronal plane bending moment as measured with a digital force guage. Bending moments about each intervertebral joint were calculated and correlated with the rate at which global motion was attained at each intervertebral segment in the first 10° of global motion where the intervertebral joint was rotating. Results Unlike previous studies of single segment specimens, a neutral zone was found to exist during lateral bending. The initial attainment rates for left and right lateral flexion were comparable to previously published in vivo values for healthy controls. Substantial and highly significant levels of correlation between initial attainment rate and neutral zone were found for left (Rho = 0.75, P = 0.0002) and combined left-right bending (Rho = 0.72, P = 0.0001) and moderate ones for right alone (Rho = 0.55, P = 0.0012). Conclusions This study found good correlation between the initial intervertebral attainment rate and the dynamic neutral zone, thereby opening the possibility to detect segmental instability from clinical studies. However the results must be treated with caution. Further studies with multiple specimens and adding sagittal plane motion are warranted

    Post-traumatic upper cervical subluxation visualized by MRI: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper describes MRI findings of upper cervical subluxation due to alar ligament disruption following a vehicular collision. Incidental findings included the presence of a myodural bridge and a spinal cord syrinx. Chiropractic management of the patient is discussed.</p> <p>Case presentation</p> <p>A 21-year old female presented with complaints of acute, debilitating upper neck pain with unremitting sub-occipital headache and dizziness following a vehicular collision. Initial emergency department and neurologic investigations included x-ray and CT evaluation of the head and neck. Due to persistent pain, the patient sought chiropractic care. MRI of the upper cervical spine revealed previously unrecognized clinical entities.</p> <p>Conclusion</p> <p>This case highlights the identification of upper cervical ligamentous injury that produced vertebral subluxation following a traumatic incident. MRI evaluation provided visualization of previously undetected injury. The patient experienced improvement through chiropractic care.</p

    Barrier dysfunction or drainage reduction: differentiating causes of CSF protein increase

    Full text link
    BACKGROUND Cerebrospinal fluid (CSF) protein analysis is an important element in the diagnostic chain for various central nervous system (CNS) pathologies. Among multiple existing approaches to interpreting measured protein levels, the Reiber diagram is particularly robust with respect to physiologic inter-individual variability, as it uses multiple subject-specific anchoring values. Beyond reliable identification of abnormal protein levels, the Reiber diagram has the potential to elucidate their pathophysiologic origin. In particular, both reduction of CSF drainage from the cranio-spinal space as well as blood-CNS barrier dysfunction have been suggested ρas possible causes of increased concentration of blood-derived proteins. However, there is disagreement on which of the two is the true cause. METHODS We designed two computational models to investigate the mechanisms governing protein distribution in the spinal CSF. With a one-dimensional model, we evaluated the distribution of albumin and immunoglobulin G (IgG), accounting for protein transport rates across blood-CNS barriers, CSF dynamics (including both dispersion induced by CSF pulsations and advection by mean CSF flow) and CSF drainage. Dispersion coefficients were determined a priori by computing the axisymmetric three-dimensional CSF dynamics and solute transport in a representative segment of the spinal canal. RESULTS Our models reproduce the empirically determined hyperbolic relation between albumin and IgG quotients. They indicate that variation in CSF drainage would yield a linear rather than the expected hyperbolic profile. In contrast, modelled barrier dysfunction reproduces the experimentally observed relation. CONCLUSIONS High levels of albumin identified in the Reiber diagram are more likely to originate from a barrier dysfunction than from a reduction in CSF drainage. Our in silico experiments further support the hypothesis of decreasing spinal CSF drainage in rostro-caudal direction and emphasize the physiological importance of pulsation-driven dispersion for the transport of large molecules in the CSF
    • 

    corecore