11 research outputs found

    Recent palaeolimnological change recorded in Lake Xiaolongwan, northeast China: Climatic versus anthropogenic forcing

    Get PDF
    Lake Xiaolongwan is a closed maar lake located in the Long Gang Volcanic Field, northeast China. Core XLW2 was collected in 2007 from the central region of the lake and provides a palaeoecological reconstruction over the past ca. 130 years (dated using radiometric methods: 210Pb and 137Cs). Diatom floristic changes and catchment productivity (carbon isotope ratios) were analysed within the core. Indicators of atmospheric pollution (XRF and SCP inventories) were also measured. Results show a marked transition from a dominant benthic assemblage to a planktonic one (increasing P:B ratios) starting after ca. 1940 AD, becoming most prominent after ca. 1980 AD (P:B > 1). Most notable floristic changes result from the increase in the planktonic species Discostella woltereckii. These changes are concomitant with increased temperature trends from the region and reconstructed temperature anomalies of the Northern Hemisphere. SCP concentrations and flux rates also increase after ca. 1950 AD, with highest values seen at ca. 1980 AD after which values decline. Normalised elemental geochemistry (e.g. Pb/Ti) also show marked changes after ca. 1970 AD, most likely derived from atmospheric deposition of Pb. The recent increase in D. woltereckii precedes anthropogenic contamination (Pb/Ti) at the site and persists after the decline in SCP concentrations. This suggests that the recent increases are driven by increased mean annual temperature trends. These temperature trends may be manifested as changes in ice cover persistence, a longer growing season and/or increased DOC at Lake Xiaolongwan: conditions for which planktonic species have a more competitive advantage

    Changing nutrient cycling in Lake Baikal, the world's oldest lake

    Get PDF
    Lake Baikal, lying in a rift zone in southeastern Siberia, is the world's oldest, deepest, and most voluminous lake that began to form over 30 million years ago. Cited as the "most outstanding example of a freshwater ecosystem" and designated a World Heritage Site in 1996 due to its high level of endemicity, the lake and its ecosystem have become increasingly threatened by both climate change and anthropogenic disturbance. Here, we present a record of nutrient cycling in the lake, derived from the silicon isotope composition of diatoms, which dominate aquatic primary productivity. Using historical records from the region, we assess the extent to which natural and anthropogenic factors have altered biogeochemical cycling in the lake over the last 2,000 y. We show that rates of nutrient supply from deep waters to the photic zone have dramatically increased since the mid-19th century in response to changing wind dynamics, reduced ice cover, and their associated impact on limnological processes in the lake. With stressors linked to untreated sewage and catchment development also now impacting the near-shore region of Lake Baikal, the resilience of the lake's highly endemic ecosystem to ongoing and future disturbance is increasingly uncertain

    Temporal controls on silicic acid utilisation along the West Antarctic Peninsula

    Get PDF
    The impact of climatic change along the Antarctica Peninsula has been widely debated in light of atmospheric/oceanic warming and increases in glacial melt over the past half century. Particular concern exists over the impact of these changes on marine ecosystems, not only on primary producers but also on higher trophic levels. Here we present a record detailing the historical controls on the biogeochemical cycling of silicic acid [Si(OH)4] on the west Antarctica Peninsula margin, a region in which the modern phytoplankton environment is constrained by seasonal sea-ice. We demonstrate that Si(OH)4 cycling through the Holocene alternates between being primarily regulated by sea-ice or glacial discharge from the surrounding grounded ice-sheet. With further climate-driven change and melting forecast for the 21st Century, our findings document the potential for biogeochemical cycling and multi-trophic interactions along the peninsula to be increasingly regulated by glacial discharge, altering food-web interactions
    corecore