5 research outputs found

    Background Proteins in Human Chorionic Gonadotropin Pharmaceutical Formulations of Different Origins

    Get PDF
    Gonadotropins, including human chorionic gonadotropin (hCG), have been used since and for several decades to treat infertility by ovarian stimulation. hCG is the most important protein for embryogenesis and embryo development and implantation in uterus upon fertilization of oocytes. The hCG used for in-vitro fertilization (IVF) is being extracted from urine of pregnant women, and it does inevitably contains other proteins secreted into urine. The presence of other proteins varies from batch to batch, and it can be significantly high. Due to the fact that many of the proteins identified in these formulations can trigger an allergic reaction, which, in turn, can affect the embryogenesis and prevent embryo implantation, it is very important to check the amount and type of contaminant proteins in pharmaceutical formulations. It was found that the total protein content varied from batch to batch, and a large number of contaminant urinary proteins were identified in all analyzed samples except for the recombinant product

    Proteomics as a Future Tool for Improving IVF Outcome

    Get PDF
    New technical and methodical and more efficient approaches beyond preimplantation genetic screening (PGS) are needed to elevate success rates in in vitro fertilization (IVF). One new approach could be the characterization of the embryos’ proteome during the IVF process. This means that specific proteins secreted by the embryo in the surrounding cultivating medium can be analyzed and compared between embryos in order to identify potential markers for a successful embryo transfer and resulting pregnancy. Furthermore, this procedure could result with understanding the processes during the whole time of incubation, from the moment of oocyte fertilization until embryo transfer and subsequently implantation by analyzing the culturing medium used in multiple culture medium exchange during the cultivation period. This procedure of embryo transfer to a new culture medium is essential for the embryo’s development and is performed daily or at least when the embryos reached the stage of embryoblast at day 4. The remaining medium after embryo removal is routinely discarded. However, this medium still can be useful for a detailed analysis of proteins and lipids that were secreted by the embryo during the previous incubation process and could help gaining information on the embryos’ current developmental status

    Mass Spectrometry in Clinical Laboratories

    Get PDF
    The analyses performed in clinical laboratories require a high level of precision, selectivity, and sensitivity. The rising number of therapeutic agents from both the field of small and large molecules and the increasing use of modern screening approaches have brought mass spectrometry into almost every clinical laboratory. The need to screen the patients and to follow the therapy’s success can often be fulfilled only by the highly selective and sensitive targeted approach with mass spectrometry. With improving instrument design and miniaturization of the separation technologies, mass spectrometry is no longer an exotic analytical approach. The use of mass spectrometry is now not restricted to the use in a clinical laboratory, but it is used in operating rooms for instant and on-site helping the surgeons with defining the margin of the tissue to be extracted. In this manuscript, we describe the use of mass spectrometry for selected clinical applications and show the possible way of future applications

    TGFβ activity released from platelet-rich fibrin adsorbs to titanium surface and collagen membranes.

    Get PDF
    Platelet-rich fibrin (PRF) contains a broad spectrum of bioactive molecules that can trigger several cellular responses. However, these molecules along with their upstream responses remain mostly uninvestigated. By means of proteomics we revealed that PRF lysates contain more than 650 proteins, being TGF-β one of the few growth factors found. To uncover the major target genes regulated by PRF lysates, gingival fibroblasts were exposed to lysates obtained from PRF membranes followed by a whole genome array. We identified 51 genes strongly regulated by PRF including IL11, NOX4 and PRG4 which are characteristic TGF-β target genes. RT-PCR and immunoassay analysis confirmed the TGF-β receptor I kinase-dependent increased expression of IL11, NOX4 and PRG4. The PRF-derived TGF-β activity was verified by the translocation of Smad2/3 into the nucleus along with the increased phosphorylation of Smad3. Considering that PRF is clinically used in combination with dental implants and collagen membranes, we showed here that PRF-derived TGF-β activity adsorbs to titanium implants and collagen membranes indicated by the changes in gene expression and immunoassay analysis. Our study points towards TGF-β as major target of PRF and suggest that TGF-β activity released by PRF adsorbs to titanium surface and collagen membranes
    corecore