8 research outputs found

    Anti-endometriosis Mechanism of Jiawei Foshou San Based on Network Pharmacology

    Get PDF
    Jiawei Foshou San (JFS) is the new formula originated from classic Foshou San formula, composed with ligustrazine, ferulic acid, and tetrahydropalmatine. Previously JFS inhibited the growth of endometriosis (EMS) with unclear mechanism, especially in metastasis, invasion, and epithelial–mesenchymal transition. In this study, network pharmacology was performed to explore potential mechanism of JFS on EMS. Through compound–compound target and compound target–EMS target networks, key targets were analyzed for pathway enrichment. MMP–TIMP were uncovered as one cluster of the core targets. Furthermore, autologous transplantation of EMS rat’s model were used to evaluate in vivo effect of JFS on invasion, metastasis and epithelial–mesenchymal transition. JFS significantly suppressed the growth, and reduced the volume of ectopic endometrium, with modification of pathologic structure. In-depth study, invasion and metastasis were restrained after treating with JFS through decreasing MMP-2 and MMP-9, increasing TIMP-1. Meanwhile, JFS promoted E-cadherin, and attenuated N-cadherin, Vimentin, Snail, Slug, ZEB1, ZEB2, Twist. In brief, anti-EMS effect of JFS might be related to the regulation of epithelial–mesenchymal transformation, thereby inhibition of invasion and metastasis. These findings reveal the potential mechanism of JFS on EMS and the benefit for further evaluation

    <i>Piper nigrum</i> Extract Inhibits the Growth of Human Colorectal Cancer HT-29 Cells by Inducing p53-Mediated Apoptosis

    No full text
    Colorectal cancer (CRC) is a prevalent malignancy of the digestive tract with the second highest mortality rate globally. Piper nigrum is a widely used traditional medicinal plant, exhibiting antitumor activity against various tumor cells. At present, research on the effect of Piper nigrum on CRC is limited to in vitro cytotoxicity, lacking comprehensive mechanism investigations. This study aimed to explore the inhibitory effect and mechanism of Piper nigrum extract (PNE) on HT-29 cells. Firstly, we identified the chemical components of PNE. Then, MTT assay, colony formation assay, JC-1 staining, and flow cytometry were used to analyze the effect of PNE on HT-29 cells in vitro. A xenograft model, histopathological examination, immunohistochemistry, and western blot were used to evaluate the tumor growth inhibitory activity and mechanism of PNE in vivo. The results indicated that PNE could inhibit cell proliferation and colony formation, reduce mitochondrial membrane potential, induce cell apoptosis in vitro, and inhibit tumor growth in vivo. Furthermore, PNE could regulate p53 and its downstream proteins, and subsequently activate the caspase-3 pathway. In summary, PNE probably induced apoptosis of HT-29 cells through the mitochondrial pathway mediated by p53. All these results suggested that PNE might be a potential natural-origin anti-CRC drug candidate
    corecore