6,666 research outputs found

    Energy absorption by polymer crazing

    Get PDF
    During the past thirty years, a tremendous amount of research was done on the development of crazing in polymers. The phenomenon of crazing was recognized as an unusual deformation behavior associated with a process of molecular orientation in a solid to resist failure. The craze absorbs a fairly large amount of energy during the crazing process. When a craze does occur the surrounding bulk material is usually stretched to several hundred percent of its original dimension and creates a new phase. The total energy absorbed by a craze during the crazing process in creep was calculated analytically with the help of some experimental measurements. A comparison of the energy absorption by the new phase and that by the original bulk uncrazed medium is made

    Superconducting and normal-state interlayer-exchange-coupling in La0.67_{0.67}Sr0.33_{0.33}MnO3{3}-YBa2_{2}Cu3_{3}O7−La_{7}-La_{0.67}SrSr_{0.33}MnO MnO{3}$ epitaxial trilayers

    Get PDF
    The issue of interlayer exchange coupling in magnetic multilayers with superconducting (SC) spacer is addressed in La0.67_{0.67}Sr0.33_{0.33}MnO3_{3} (LSMO) - YBa2_{2}Cu3_{3}O7_{7} (YBCO) - La0.67_{0.67}Sr0.33_{0.33}MnO3_{3} (LSMO) epitaxial trilayers through resistivity, ac-susceptibility and magnetization measurements. The ferromagnetic (FM) LSMO layers possessing in-plane magnetization suppress the critical temperature (Tc)_{c}) of the c-axis oriented YBCO thin film spacer. The superconducting order, however, survives even in very thin layers (thickness dY∼_{Y} \sim 50 {\AA}, ∼\sim 4 unit cells) at T << 25 K. A predominantly antiferromagnetic (AF) exchange coupling between the moments of the LSMO layers at fields << 200 Oe is seen in the normal as well as the superconducting states of the YBCO spacer. The exchange energy J1_{1} (∼\sim 0.08 erg/cm2^{2} at 150 K for dY_{Y} = 75 {\AA}) grows on cooling down to Tc_{c}, followed by truncation of this growth on entering the superconducting state. The coupling energy J1_{1} at a fixed temperature drops exponentially with the thickness of the YBCO layer. The temperature and dY_{Y} dependencies of this primarily non-oscillatory J1_{1} are consistent with the coupling theories for systems in which transport is controlled by tunneling. The truncation of the monotonic T dependence of J1_{1} below Tc_{c} suggests inhibition of single electron tunneling across the CuO2_{2} planes as the in-plane gap parameter acquires a non-zero value.Comment: Accepted for publication in Phys. Rev.

    Inferring Unusual Crowd Events From Mobile Phone Call Detail Records

    Full text link
    The pervasiveness and availability of mobile phone data offer the opportunity of discovering usable knowledge about crowd behaviors in urban environments. Cities can leverage such knowledge in order to provide better services (e.g., public transport planning, optimized resource allocation) and safer cities. Call Detail Record (CDR) data represents a practical data source to detect and monitor unusual events considering the high level of mobile phone penetration, compared with GPS equipped and open devices. In this paper, we provide a methodology that is able to detect unusual events from CDR data that typically has low accuracy in terms of space and time resolution. Moreover, we introduce a concept of unusual event that involves a large amount of people who expose an unusual mobility behavior. Our careful consideration of the issues that come from coarse-grained CDR data ultimately leads to a completely general framework that can detect unusual crowd events from CDR data effectively and efficiently. Through extensive experiments on real-world CDR data for a large city in Africa, we demonstrate that our method can detect unusual events with 16% higher recall and over 10 times higher precision, compared to state-of-the-art methods. We implement a visual analytics prototype system to help end users analyze detected unusual crowd events to best suit different application scenarios. To the best of our knowledge, this is the first work on the detection of unusual events from CDR data with considerations of its temporal and spatial sparseness and distinction between user unusual activities and daily routines.Comment: 18 pages, 6 figure

    QCD Factorization of Quasi Generalized Gluon Distributions

    Full text link
    We study the factorization relations between quasi gluon GPDs and twist-2 GPDs. The perturbative coefficient functions are obtained at one-loop level. They are free from any collinear- or I.R. divergences. Unlike the case of the factorization of quasi quark GPDs at one-loop, we have to add ghost contributions for the factorization of quasi gluon GPDs in order to obtain gauge-invariant results. In general, operators will be mixed beyond tree-level. Our work shows that the mixing pattern of the nonlocal operators in quasi gluon GPDs is the same as local operators, i.e., the nonlocal operators considered are mixed with gauge-invariant operators, BRST-variation operators and operators involving EOM operator. The factorization relations are obtained for all quasi gluon GPDs. Taking the forward limit, we also obtain the relations between quasi gluon PDFs and twist-2 PDFs.Comment: 23 pages, 5 figures, published versio

    Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation

    Get PDF
    Various techniques have been applied for the functional analysis of synaptic transmission in Cultured neurons. Here, we describe a method of studying synaptic transmission in neurons cultured at high-density from different brain regions such as the cortex, striatum and spinal cord. We use postsynaptic whole-cell recordings to monitor synaptic Currents triggered by presynaptic action potentials that are induced by brief stimulations with a nearby extracellular bipolar electrode. Pharmacologically isolated excitatory or inhibitory postsynaptic currents can be reliably induced, with amplitudes, synaptic charge transfers, and short-term plasticity properties that are reproducible from culture to culture. We show that the size and kinetics of pharmacologically isolated inhibitory postsynaptic Currents triggered by single action potentials or stimulus trains depend on the Ca2+ concentration, temperature and stimulation frequency. This method can be applied to study synaptic transmission in wildtype neurons infected with lentiviruses encoding various components of presynaptic release machinery, or in neurons from genetically modified mice, for example neurons carrying floxed genes in which gene expression can be acutely ablated by expression of Cre recombinase. The preparation described in this paper should be useful for analysis of synaptic transmission in inter-neuronal synapses formed by different types of neurons. (c) 2006 Elsevier B.V. All rights reserved

    Transient Analysis of Warm Electron Injection Programming of Double Gate SONOS Memories by means of Full Band Monte Carlo Simulation

    Full text link
    In this paper we investigate "Warm Electron Injection" as a mechanism for NOR programming of double-gate SONOS memories through 2D full band Monte Carlo simulations. Warm electron injection is characterized by an applied VDS smaller than 3.15 V, so that electrons cannot easily accumulate a kinetic energy larger than the height of the Si/SiO2 barrier. We perform a time-dependent simulation of the program operation where the local gate current density is computed with a continuum-based method and is adiabatically separated from the 2D full Monte Carlo simulation used for obtaining the electron distribution in the phase space. In this way we are able to compute the time evolution of the charge stored in the nitride and of the threshold voltages corresponding to forward and reverse bias. We show that warm electron injection is a viable option for NOR programming in order to reduce power supply, preserve reliability and CMOS logic level compatibility. In addition, it provides a well localized charge, offering interesting perspectives for multi-level and dual bit operation, even in devices with negligible short channel effects

    Effect of microwave irradiation on reactivity of metallurgical coke in CO2 atmosphere

    Get PDF
    Influence of microwave irradiation on gasification behavior and crystallite parameters of coke samples was studied in this research. The results indicated that microwave irradiation have significant influence on the carbon structure and the reactivity of coke in CO2 atmosphere. The thermogravimetric results showed that the temperature of coke at different conversion rates of 10 %, 20 % and 30 % were reduced by 20 °C, 30 °C and 50 °C respectively. Simultaneously, microwave irradiation may lead to variation in lateral size and stacking height of crystallite and subsequently reduce the gasification reaction rate of coke in CO2 atmosphere
    • …
    corecore