6,403 research outputs found

    Pairs of Noncrossing Free Dyck Paths and Noncrossing Partitions

    Get PDF
    Using the bijection between partitions and vacillating tableaux, we establish a correspondence between pairs of noncrossing free Dyck paths of length 2n2n and noncrossing partitions of [2n+1][2n+1] with n+1n+1 blocks. In terms of the number of up steps at odd positions, we find a characterization of Dyck paths constructed from pairs of noncrossing free Dyck paths by using the Labelle merging algorithm.Comment: 9 pages, 5 figures, revised version, to appear in Discrete Mathematic

    The Microvasculature of Human Infant Oral Mucosa Using Vascular Corrosion Casts and India Ink Injection II. Palate and Lip

    Get PDF
    The microvasculature of human hard and soft palate and lip originating from four infant males and six females, aged 6 months to 2 years was studied by scanning electron microscopy of vascular corrosion casts and light microscopy of India ink injected specimens. The capillary loops of the hard palate mucosa and vermilion border of the lips were found to be tall, numerous and consisted of primary, secondary and tertiary loops. Those of the soft palatal and labial mucosa were short, few in number and demonstrated a simple hair-pin shape originating directly from the subpapillary vascular network. It was concluded that the configuration of capillary loops is not only determined by the shape of the connective tissue papillae in the lamina propria but also influenced by the functional demands characteristic of the different areas of the oral mucosa

    Doping dependence of phonon and quasiparticle heat transport of pure and Dy-doped Bi_2Sr_2CaCu_2O_{8+\delta} single crystals

    Full text link
    The temperature and magnetic-field (H) dependences of thermal conductivity (\kappa) of Bi_2Sr_2CaCu_2O_{8+\delta} (Bi2212) are systematically measured for a broad doping range by using both pure Bi2212 single crystals with tuned oxygen contents and Bi_2Sr_2Ca_{1-x}Dy_xCu_2O_{8+\delta} (Dy-Bi2212) single crystals with different Dy contents x. In the underdoped samples, the quasiparticle (QP) peak below T_c is strongly suppressed, indicating strong QP scattering by impurities or oxygen defects, whereas the phonon conductivity is enhanced in moderately Dy-doped samples and a phonon peak at 10 K is observed for the first time in Bi2212 system, which means Dy^{3+} ions not only introduce the impurities or point defects but also stabilize the crystal lattice. The subkelvin data show that the QP heat conductivity gradually decreases upon lowering the hole doping level. The magnetic-field dependence of \kappa at temperature above 5 K is mainly due to the QP scattering off vortices. While the underdoped pure Bi2212 show very weak field dependence of \kappa, the Dy-doped samples present an additional "dip"-like term of \kappa(H) at low field, which is discussed to be related to the phonon scattering by free spins of Dy^{3+} ions. For non-superconducting Dy-Bi2212 samples with x \simeq 0.50, an interesting "plateau" feature shows up in the low-T \kappa(H) isotherms with characteristic field at 1 -- 2 T, for which we discuss the possible revlevance of magnon excitations.Comment: 11 pages, 11 figures, accepted for publication in Phys. Rev.

    Study on the application of a new multiepoxy reinforcement agent for sheep leather

    Get PDF
    Content: Leather is a kind of natural biomass composite material which is made of animal skin as material by a series of chemical and physical processing. Its main structure is Collagen fibers of three-dimensional network structure. As we all know sheep leather always exist a common problem with low strength, while the strength of leather depended on the woven degree of collagen fibers. Through the past decades, many methods have been tried to improve the properties of sheep leather. The most commonly used methods are retanning. However, the strength enhancement of sheep leather is extremely limited by retanning, although the fullness and softness may be improved. In this study, a new type of multi-epoxy reinforcement agent (IGE) and IGE with the synergistic effect of polyamine (IGE-PA) were used to enhance the strength of sheep leather in tanning and fatliquoring process. Comparing with chromium tanned leather, it was found that under the optimized conditions (dosage: 10%, pH: 8, Temperature: 35℃ for penetration and 45℃ for fixation, tanning time: 10 h) with IGE as the main tanning agent, the tearing strength was increased 56.8%. While when the polyamine as the synergetic agent for IGE, the tearing strength was significantly increased 87.9%. While IGE and IGE-PA were used in fatliquoring process, it has significant reinforcement effect for tetrakis hydroxymethyl phosphonium (THP) salt tanned leather. It was found that under the optimized conditions (Dosage: 2.5%, pH: 7-8, Temperature: 50℃, Time: 2h) with IGE in fatliquoring process, the tear strength was increased 50.24%, while the IGE-PA was used, the tear strength was increased 64.3%. Furthermore, TGA results showed that decomposition temperatures of IGE and IGE-PA enhanced leather were all higher than traditional chromium tanned leather. In addition, SEM results showed that IGE and IGE-PA enhanced leather obtained better opened-up fiber structure. Take-Away: 1. A new type of multi-epoxy tanning agent (IGE) has reinforcement effect for sheep leather especially in tear strength. 2. IGE with the synergistic effect of polyamine (IGE-PA) were used in tanning process, which has a significant enhancement for the sheep leather. 3. IGE and IGE-PA can be also used in fatliquoring process to enhance the strength of sheep leather

    Modally selective nonlinear ultrasonic waves for characterization of pitting damage in whipple shields of spacecraft

    Get PDF
    Featuring hundreds of craters, cracks and diverse microscopic defects disorderedly scattered over a wide region, the pitting damage in a typical Whipple shield of spacecraft induces highly complex wave scattering. Due to the dispersive and multimode natures, only nonlinear ultrasonic waves (NUWs) with exact phase-velocity matching condition are generally used to evaluate the microstructural material deterioration. Targeting accurate, holistic evaluation of pitting damage, semi-analytical finite element (SAFE) approach is adopted to identify the internal resonant conditions and to select an efficient mode pair for characterizing pitting damage. To explore the feasibility of pitting damage evaluation by using the selected mode pair and fully utilize its unique merits, the cumulative effect of second harmonics is analyzed using numerical simulations and corroborated by experiment. Regardless of the selection of mode pair (i.e., S1-s2 and S0-s0), the amplitude of second harmonics obtained in the pitted plate is observed to increase significantly after the probing GUWs traverse the pitted region, upon interacting with the pitting damage. This phenomenon is remarkable particularly when the probing GUW does not satisfy the requirement of internal resonance. The mode pairs S0-s0 with different degrees of phase-velocity mismatching are further analyzed. Results show that the hypervelocity impact-induced pitting damage in the rear wall of Whipple shields can be detected accurately using the mode pair S0-s0, and a relatively higher excitation frequency is preferred due to its higher degree of phase-velocity mismatching, leading to standing out of the pitting damage-induced CAN
    • …
    corecore