35 research outputs found

    Caspase-7: a critical mediator of optic nerve injury-induced retinal ganglion cell death

    Get PDF
    Reduction in caspase-7 expression in the retina of Casp7 −/− mice. Representative western blot images of pro-caspase-7 in protein extracts from retinas from WT and Casp7 −/− mice. (TIFF 42 kb

    Inducible nitric oxide synthase, Nos2, does not mediate optic neuropathy and retinopathy in the DBA/2J glaucoma model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitric oxide synthase 2 (NOS2) contributes to neural death in some settings, but its role in glaucoma remains controversial. NOS2 is implicated in retinal ganglion cell degeneration in a rat glaucoma model in which intraocular pressure (IOP) is experimentally elevated by blood vessel cauterization, but not in a rat glaucoma model where IOP was elevated by injection of hypertonic saline. To test the importance of NOS2 for an inherited glaucoma, in this study we both genetically and pharmacologically decreased NOS2 activity in the DBA/2J mouse glaucoma model.</p> <p>Methods</p> <p>The expression of <it>Nos2 </it>in the optic nerve head was analyzed at both the RNA and protein levels at different stages of disease pathogenesis. To test the involvement of <it>Nos2 </it>in glaucomatous neurodegeneration, a null allele of <it>Nos2 </it>was backcrossed into DBA/2J mice and the incidence and severity of glaucoma was assessed in mice of each <it>Nos2 </it>genotype. Additionally, DBA/2J mice were treated with the NOS2 inhibitor aminoguanidine and the disease compared to untreated mice.</p> <p>Results</p> <p>Optic nerve head <it>Nos2 </it>RNA levels varied and increased during moderate but decreased at early and severe stages of disease. Despite the presence of a few NOS2 positive cells in the optic nerve head, NOS2 protein was not substantially increased during the glaucoma. Genetic deficiency of <it>Nos2 </it>or aminoguanidine treatment did not alter the IOP profile of DBA/2J mice. Additionally, neither <it>Nos2 </it>deficiency nor aminoguanidine had any detectable affect on the glaucomatous optic nerve damage.</p> <p>Conclusion</p> <p>Glaucomatous neurodegeneration in DBA/2J mice does not require NOS2 activity. Further experiments involving various models are needed to assess the general importance of <it>Nos2 </it>in glaucoma.</p

    Cataract Preventive Role of Isolated Phytoconstituents: Findings from a Decade of Research

    No full text
    Cataract is an eye disease with clouding of the eye lens leading to disrupted vision, which often develops slowly and causes blurriness of the eyesight. Although the restoration of the vision in people with cataract is conducted through surgery, the costs and risks remain an issue. Botanical drugs have been evaluated for their potential efficacies in reducing cataract formation decades ago and major active phytoconstituents were isolated from the plant extracts. The aim of this review is to find effective phytoconstituents in cataract treatments in vitro, ex vivo, and in vivo. A literature search was synthesized from the databases of Pubmed, Science Direct, Google Scholar, Web of Science, and Scopus using different combinations of keywords. Selection of all manuscripts were based on inclusion and exclusion criteria together with analysis of publication year, plant species, isolated phytoconstituents, and evaluated cataract activities. Scientists have focused their attention not only for anti-cataract activity in vitro, but also in ex vivo and in vivo from the review of active phytoconstituents in medicinal plants. In our present review, we identified 58 active phytoconstituents with strong anti-cataract effects at in vitro and ex vivo with lack of in vivo studies. Considering the benefits of anti-cataract activities require critical evaluation, more in vivo and clinical trials need to be conducted to increase our understanding on the possible mechanisms of action and the therapeutic effects

    Involvement of Nrf2 in Ocular Diseases

    No full text
    The human body harbors within it an intricate and delicate balance between oxidants and antioxidants. Any disruption in this checks-and-balances system can lead to harmful consequences in various organs and tissues, such as the eye. This review focuses on the effects of oxidative stress and the role of a particular antioxidant system—the Keap1-Nrf2-ARE pathway—on ocular diseases, specifically age-related macular degeneration, cataracts, diabetic retinopathy, and glaucoma. Together, they are the major causes of blindness in the world
    corecore