167 research outputs found

    The size of the X-ray emitting region in SWIFT J2127.4+5654 via a broad line region cloud X-ray eclipse

    Full text link
    We present results obtained from the time-resolved X-ray spectral analysis of the Narrow-Line-Seyfert 1 galaxy SWIFT J2127.4+5654 during a ~130 ks XMM-Newton observation. We reveal large spectral variations, especially during the first ~90 ks of the XMM-Newton exposure. The spectral variability can be attributed to a partial eclipse of the X-ray source by an intervening low-ionization/cold absorbing structure (cloud) with column density N_H = 2.0^{+0.2}_{-0.3}e22 cm^-2 which gradually covers and then uncovers the X-ray emitting region with covering fraction ranging from zero to ~43 per cent. Our analysis enables us to constrain the size, number density, and location of the absorbing cloud with good accuracy. We infer a cloud size (diameter) of $D_c < 1.5e13 cm, corresponding to a density of n_c > 1.5e9 cm^-3 at a distance of R_c > 4.3e16 cm from the central black hole. All of the inferred quantities concur to identify the absorbing structure with one single cloud associated with the broad line region of SWIFT J2127.4+5654. We are also able to constrain the X-ray emitting region size (diameter) to be D_s < 2.3e13 cm which, assuming the black hole mass estimated from single-epoch optical spectroscopy (1.5e7 M_sun), translates into D_s < 10.5 gravitational radii (r_g) with larger sizes (in r_g) being associated with smaller black hole masses, and viceversa. We also confirm the presence of a relativistically distorted reflection component off the inner accretion disc giving rise to a broad relativistic Fe K emission line and small soft excess (small because of the high Galactic column density), supporting the measurement of an intermediate black hole spin in SWIFT J2127.4+5654 that was obtained from a previous Suzaku observation.Comment: 8 pages, 7 figures, accepted for publication in MNRA

    Multi-wavelength and black hole mass properties of Low Luminosity Active Nuclei

    Get PDF
    We investigate the relation between the X-ray nuclear emission, optical emission line, radio luminosity and black hole mass for a sample of nearby Seyfert galaxies. Strong linear correlations between the 2-10 keV and [OIII], radio luminosities have been found, showing the same slopes found in quasars and luminous Seyfert galaxies, thus implying independence from the level of nuclear activity displayed by the sources. Moreover, despite the wide range of Eddington ratios (L/L(Edd)) tested here (six orders of magnitude, from 0.1 down to 10^(-7), no correlation is found between the X-ray, optical emission lines, radio luminosities and the black hole mass. These results suggest that low luminosity Seyfert galaxies are a scaled down version of luminous AGN and probably are powered by the same physical processes.Comment: 6 pages, 3 figures, contributed talk presented at the Workshop "The multicoloured landscape of compact objects and their explosive origin", Cefalu' (Sicily), 11-24 June 2006, to be published by AI

    1ES 1927+654: a bare Seyfert 2

    Get PDF
    1ES 1927+654 is an active galactic nucleus (AGN) that appears to defy the unification model. It exhibits a type-2 optical spectrum, but possesses little X-ray obscuration. XMM-Newton and Suzaku observations obtained in 2011 are used to study the X-ray properties of 1ES 1927+654. The spectral energy distribution derived from simultaneous optical-to-X-ray data obtained with XMM-Newton shows the AGN has a typical Eddington ratio (L/L_Edd = 0.014-0.11). The X-ray spectrum and rapid variability are consistent with originating from a corona surrounding a standard accretion disc. Partial covering models can describe the x-ray data; however, the narrow Fe Ka emission line predicted from standard photoelectric absorption is not detected. Ionized partial covering also favours a high-velocity outflow (v ~ 0.3c), which requires the kinetic luminosity of the wind to be >30 per cent of the bolometric luminosity of the AGN. Such values are not unusual, but for 1ES 1927+654 it requires the wind is launched very close to the black hole (~ 10 Rg). Blurred reflection models also work well at describing the spectral and timing properties of 1ES 1927+654 if the AGN is viewed nearly edge-on, implying that an inner accretion disc must be present. The high inclination is intriguing as it suggests 1ES 1927+654 could be orientated like a Seyfert 2, in agreement with its optical classification, but viewed through a tenuous torus.Comment: 14 pages. Accepted for publication in MNRA

    The X-ray and Radio Connection in Low-luminosity Active Nuclei

    Get PDF
    We present the results of the correlation between the nuclear 2-10 keV X-ray and radio (at 2cm, 6cm and 20cm) luminosities for a well defined sample of local Seyfert galaxies. We use a sample of low luminosity radio galaxies (LLRGs) for comparison. In both Seyfert and LLRGs samples, X-ray and radio luminosities are significantly correlated over 8 orders of magnitude, indicating that the X-ray and radio emission sources are strongly coupled. Moreover, both samples show a similar regression slope, L(X)\propto L(R)^(0.97), but Seyfert galaxies are three orders of magnitude less luminous in the radio band than LLRGs. This suggests that either similar physical mechanisms are responsible for the observed emission or a combination of different mechanisms ends up producing a similar correlation slope. Indeed, the common belief for LLRG is that both the X-ray and radio emission are likely dominated by a relativistic jet component, while in Seyfert galaxies the X-ray emission probably arises from a disk-corona system and the radio emission is attributed to a jet/outflow component. We investigate the radio loudness issue in the two samples and find that the Seyfert galaxies and the LLRGs show a different distribution of the radio loudness parameters. No correlation is found between the luminosity and the radio loudness, however the latter is related to the black hole mass and anti-correlated with the Eddington ratio. The dichotomy in the radio loudness between Seyfert and LLRG observed down to low Eddington ratios, L(2-10)/L(Edd) \sim 10^(-8), does not support the idea that the origin of the radio loudness is due to a switch in the accretion mode

    The nuclear radio structure of X-ray bright AGN

    Full text link
    The physical nature of the X-ray/radio correlation of AGN is still an unsolved question. High angular resolution observations are necessary to disentangle the associated energy dynamics into nuclear and stellar components. We present MERLIN/EVN 18cm observations of 13 X-raying AGN. The sample consists of Seyfert 1, Narrow Line Seyfert 1, and LINER-like galaxies. We find that for all objects the radio emission is unresolved and that the radio luminosities and brightness temperatures are too high for star formation to play an important role. This indicates that the radio emission in these sources is closely connected to processes that occur in the vicinity of the central massive black hole, also where the X-ray emission is believed to originate in.Comment: 5 pages, 3 figures, submitted to "The Universe under the Microscope - Astrophysics at High Angular Resolution", Bad Honnef, German

    The nuclear radio structure of X-ray bright AGN

    Full text link
    The physical nature of the X-ray/radio correlation of AGN is still an unsolved question. High angular resolution observations are necessary to disentangle the associated energy dynamics into nuclear and stellar components. We present MERLIN/EVN 18cm observations of 13 X-raying AGN. The sample consists of Seyfert 1, Narrow Line Seyfert 1, and LINER-like galaxies. We find that for all objects the radio emission is unresolved and that the radio luminosities and brightness temperatures are too high for star formation to play an important role. This indicates that the radio emission in these sources is closely connected to processes that occur in the vicinity of the central massive black hole, also where the X-ray emission is believed to originate in.Comment: 5 pages, 3 figures, submitted to "The Universe under the Microscope - Astrophysics at High Angular Resolution", Bad Honnef, German

    The nuclear radio structure of X-ray bright AGN

    Full text link
    The physical nature of the X-ray/radio correlation of AGN is still an unsolved question. High angular resolution observations are necessary to disentangle the associated energy dynamics into nuclear and stellar components. We present MERLIN/EVN 18cm observations of 13 X-raying AGN. The sample consists of Seyfert 1, Narrow Line Seyfert 1, and LINER-like galaxies. We find that for all objects the radio emission is unresolved and that the radio luminosities and brightness temperatures are too high for star formation to play an important role. This indicates that the radio emission in these sources is closely connected to processes that occur in the vicinity of the central massive black hole, also where the X-ray emission is believed to originate in.Comment: 5 pages, 3 figures, submitted to "The Universe under the Microscope - Astrophysics at High Angular Resolution", Bad Honnef, German

    The X-ray and radio-emitting plasma lobes of 4C23.56: further evidence of recurrent jet activity and high acceleration energies

    Full text link
    New Chandra observations of the giant (0.5 Mpc) radio galaxy 4C23.56 at z = 2.5 show X-rays in a linear structure aligned with its radio emission, but anti-correlated with the detailed radio structure. Consistent with the powerful, high-z giant radio galaxies we have studied previously, X-rays seem to be invariably found where the lobe plasma is oldest even where the radio emission has long since faded. The hotspot complexes seem to show structures resembling the double shock structure exhibited by the largest radio quasar 4C74.26, with the X-ray shock again being offset closer to the nucleus than the radio synchrotron shock. In the current paper, the offsets between these shocks are even larger at 35kpc. Unusually for a classical double (FRII) radio source, there is smooth low surface-brightness radio emission associated with the regions beyond the hotspots (further away from the nucleus than the hotspots themselves), which seems to be symmetric for the ends of both jets. We consider possible explanations for this phenomenon, and conclude that it arises from high-energy electrons, recently accelerated in the nearby radio hotspots that are leaking into a pre-existing weakly-magnetized plasma that are symmetric relic lobes fed from a previous episode of jet activity. This contrasts with other manifestations of previous epochs of jet ejection in various examples of classical double radio sources namely (1) double-double radio galaxies by e.g. Schoenmakers et al, (2) the double-double X-ray/radio galaxies by Laskar et al and (3) the presence of a relic X-ray counter-jet in the prototypical classical double radio galaxy, Cygnus A by Steenbrugge et al. The occurrence of multi-episodic jet activity in powerful radio galaxies and quasars indicates that they may have a longer lasting influence on the on-going structure formation processes in their environs than previously presumed.Comment: Accepted by MNRAS; 6 page
    corecore