41 research outputs found

    Efficacy and safety of adding alirocumab to rosuvastatin versus adding ezetimibe or doubling the rosuvastatin dose in high cardiovascular-risk patients:The ODYSSEY OPTIONS II randomized trial

    Get PDF
    Objective: To compare lipid-lowering efficacy of adding alirocumab to rosuvastatin versus other treatment strategies (NCT01730053). Methods: Patients receiving baseline rosuvastatin regimens (10 or 20 mg) were randomized to: add-on alirocumab 75 mg every-2-weeks (Q2W) (1-mL subcutaneous injection via pre-filled pen); add-on ezetimibe 10 mg/day; or double-dose rosuvastatin. Patients had cardiovascular disease (CVD) and low-density lipoprotein cholesterol (LDL-C) 6570 mg/dL (1.8 mmol/L) or CVD risk factors and LDL-C 65100 mg/dL (2.6 mmol/L). In the alirocumab group, dose was blindly increased at Week 12 to 150 mg Q2W (also 1-mL volume) in patients not achieving their LDL-C target. Primary endpoint was percent change in calculated LDL-C from baseline to 24 weeks (intent-to-treat). Results: 305 patients were randomized. In the baseline rosuvastatin 10 mg group, significantly greater LDL-C reductions were observed with add-on alirocumab (-50.6%) versus ezetimibe (-14.4%; p < 0.0001) and double-dose rosuvastatin (-16.3%; p < 0.0001). In the baseline rosuvastatin 20 mg group, LDL-C reduction with add-on alirocumab was -36.3% compared with -11.0% with ezetimibe and -15.9% with double-dose rosuvastatin (p = 0.0136 and 0.0453, respectively; pre-specified threshold for significance p < 0.0125). Overall, ~80% alirocumab patients were maintained on 75 mg Q2W. Of alirocumab-treated patients, 84.9% and 66.7% in the baseline rosuvastatin 10 and 20 mg groups, respectively, achieved risk-based LDL-C targets. Treatment-emergent adverse events occurred in 56.3% of alirocumab patients versus 53.5% ezetimibe and 67.3% double-dose rosuvastatin (pooled data). Conclusions: The addition of alirocumab to rosuvastatin provided incremental LDL-C lowering versus adding ezetimibe or doubling the rosuvastatin dose

    A Guide to Handling Missing Data in Cost-Effectiveness Analysis Conducted Within Randomised Controlled Trials

    Get PDF
    The authors would like to thank Professor Adrian Grant and the team at the University of Aberdeen (Professor Craig Ramsay, Janice Cruden, Charles Boachie, Professor Marion Campbell and Seonaidh Cotton) who kindly allowed the REFLUX dataset to be used for this work, and Eldon Spackman for kindly sharing the Stata (R) code for calculating the probability that an intervention is cost effective following MI. The authors are grateful to the reviewers for their comments, which greatly improved this paper. M. G. is recipient of a Medical Research Council Early Career Fellowship in Economics of Health (grant number: MR/K02177X/1). I. R. W. was supported by the Medical Research Council [Unit Programme U105260558]. No specific funding was obtained to produce this paper. The authors declare no conflicts of interest.Missing data are a frequent problem in cost-effectiveness analysis (CEA) within a randomised controlled trial. Inappropriate methods to handle missing data can lead to misleading results and ultimately can affect the decision of whether an intervention is good value for money. This article provides practical guidance on how to handle missing data in within-trial CEAs following a principled approach: (i) the analysis should be based on a plausible assumption for the missing data mechanism, i.e. whether the probability that data are missing is independent of or dependent on the observed and/or unobserved values; (ii) the method chosen for the base-case should fit with the assumed mechanism; and (iii) sensitivity analysis should be conducted to explore to what extent the results change with the assumption made. This approach is implemented in three stages, which are described in detail: (1) descriptive analysis to inform the assumption on the missing data mechanism; (2) how to choose between alternative methods given their underlying assumptions; and (3) methods for sensitivity analysis. The case study illustrates how to apply this approach in practice, including software code. The article concludes with recommendations for practice and suggestions for future research.Medical Research Council Early Career Fellowship in Economics of Health MR/K02177X/1Medical Research Council UK (MRC) U105260558Medical Research Council UK (MRC) MC_U105260558 MR/K02177X/
    corecore