5 research outputs found

    The runaway binary LP 400−22 is leaving the Galaxy

    Get PDF
    We present optical spectroscopy, astrometry, radio and X-ray observations of the runaway binary LP 400−22. We refine the orbital parameters of the system based on our new radial velocity observations. Our parallax data indicate that LP 400−22 is significantly more distant (3σ lower limit of 840 pc) than initially predicted. LP 400−22 has a tangential velocity in excess of 830 km s^−1; it is unbound to the Galaxy. Our radio and X-ray observations fail to detect a recycled millisecond pulsar companion, indicating that LP 400−22 is a double white dwarf system. This essentially rules out a supernova runaway ejection mechanism. Based on its orbit, a Galactic Centre origin is also unlikely. However, its orbit intersects the locations of several globular clusters; dynamical interactions between LP 400−22 and other binary stars or a central black hole in a dense cluster could explain the origin of this unusual binary

    Gravitational Radiation from Compact Binary Pulsars

    Full text link
    An outstanding question in modern Physics is whether general relativity (GR) is a complete description of gravity among bodies at macroscopic scales. Currently, the best experiments supporting this hypothesis are based on high-precision timing of radio pulsars. This chapter reviews recent advances in the field with a focus on compact binary millisecond pulsars with white-dwarf (WD) companions. These systems - if modeled properly - provide an unparalleled test ground for physically motivated alternatives to GR that deviate significantly in the strong-field regime. Recent improvements in observational techniques and advances in our understanding of WD interiors have enabled a series of precise mass measurements in such systems. These masses, combined with high-precision radio timing of the pulsars, result to stringent constraints on the radiative properties of gravity, qualitatively very different from what was available in the past.Comment: Short review chapter to appear in "Gravitational Wave Astrophysics" by Springer-Verlag, edited by Carlos F. Sopuerta; v3: a few major corrections and updated references. Comments are welcome
    corecore