57 research outputs found

    ACR Appropriateness Criteria® Spinal Bone Metastases

    Full text link
    The spine is a common site of involvement in patients with bone metastases. Apart from pain, hypercalcemia, and pathologic fracture, progressive tumor can result in neurologic deterioration caused by spinal cord compression or cauda equina involvement. The treatment of spinal bone metastases depends on histology, site of disease, extent of epidural disease, extent of metastases elsewhere, and neurologic status. Treatment recommendations must weigh the risk-benefit profile of external beam radiation therapy (EBRT) for the particular individual's circumstance, including neurologic status, performance status, extent of spinal disease, stability of the spine, extra-spinal disease status, and life expectancy. Patients with spinal instability should be evaluated for surgical intervention. Research studies are needed that evaluate the combination or sequencing of localized therapies with systemic therapies including chemotherapy, hormonal therapy (HT), osteoclast inhibitors (OI), and radiopharmaceuticals. The roles of stereotactic body radiation therapy (SBRT) in the management of spinal oligometastasis, radioresistant spinal metastasis, and previously irradiated but progressive spinal metastasis are emerging, but more research is needed to validate the findings from retrospective studies. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every 2 years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140115/1/jpm.2012.0376.pd

    ACR Appropriateness Criteria® Non-Spine Bone Metastases

    Full text link
    Abstract Bone is one of the most common sites of metastatic spread of malignancy, with possible deleterious effects including pain, hypercalcemia, and pathologic fracture. External beam radiotherapy (EBRT) remains the mainstay for treatment of painful bone metastases. EBRT may be combined with other local therapies like surgery or with systemic treatments like chemotherapy, hormonal therapy, osteoclast inhibitors, or radiopharmaceuticals. EBRT is not commonly recommended for patients with asymptomatic bone metastases unless they are associated with a risk of pathologic fracture. For those who do receive EBRT, appropriate fractionation schemes include 30?Gy in 10 fractions, 24?Gy in 6 fractions, 20?Gy in 5 fractions, or a single 8?Gy fraction. Single fraction treatment maximizes convenience, while fractionated treatment courses are associated with a lower incidence of retreatment. The appropriate postoperative dose fractionation following surgical stabilization is uncertain. Reirradiation with EBRT may be safe and provide pain relief, though retreatment might create side effect risks which warrant its use as part of a clinical trial. All patients with bone metastases should be considered for concurrent management by a palliative care team, with patients whose life expectancy is less than six months appropriate for hospice evaluation. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every two years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98458/1/jpm%2E2011%2E0512.pd

    Joint EANM, SNMMI, and IAEA Enabling Guide: How to Set up a Theranostics Center.

    Full text link
    peer reviewedThe theranostics concept using the same target for both imaging and therapy dates back to the middle of the last century, when radioactive iodine was first used to treat thyroid diseases. Since then, radioiodine has become broadly established clinically for diagnostic imaging and therapy of benign and malignant thyroid disease, worldwide. However, only since the approval of SSTR2-targeting theranostics following the NETTER-1 trial in neuroendocrine tumors, and the positive outcome of the VISION trial has theranostics gained substantial attention beyond nuclear medicine. The roll-out of radioligand therapy for treating a high-incidence tumor such as prostate cancer requires the expansion of existing and the establishment of new theranostics centers. Despite wide global variation in the regulatory, financial and medical landscapes, this guide attempts to provide valuable information to enable interested stakeholders to safely initiate and operate theranostic centers. This enabling guide does not intend to answer all possible questions, but rather to serve as an overarching framework for multiple, more detailed future initiatives. It recognizes that there are regional differences in the specifics of regulation of radiation safety, but common elements of best practice valid globally

    90Y-clivatuzumab tetraxetan with or without low-dose gemcitabine: A phase Ib study in patients with metastatic pancreatic cancer after two or more prior therapies

    Get PDF
    AbstractBackgroundFor patients with metastatic pancreatic adenocarcinoma, there are no approved or established treatments beyond the 2nd line. A Phase Ib study of fractionated radioimmunotherapy was undertaken in this setting, administering 90Y-clivatuzumab tetraxetan (yttrium-90-radiolabelled humanised antibody targeting pancreatic adenocarcinoma mucin) with or without low radiosensitising doses of gemcitabine.MethodsFifty-eight patients with three (2–7) median prior treatments were treated on Arm A (N=29, 90Y-clivatuzumab tetraxetan, weekly 6.5mCi/m2doses×3, plus gemcitabine, weekly 200mg/m2 doses×4 starting 1week earlier) or Arm B (N=29, 90Y-clivatuzumab tetraxetan alone, weekly 6.5mCi/m2doses×3), repeating cycles after 4-week delays. Safety was the primary endpoint; efficacy was also evaluated.ResultsCytopaenias (predominantly transient thrombocytopenia) were the only significant toxicities. Fifty-three patients (27 Arm A, 26 Arm B, 91% overall) completed ⩾1 full treatment cycles, with 23 (12 Arm A, 11 Arm B; 40%) receiving multiple cycles, including seven (6 Arm A, 1 Arm B; 12%) given 3–9 cycles. Two patients in Arm A had partial responses by RECIST criteria. Kaplan–Meier overall survival (OS) appeared improved in Arm A versus B (hazard ratio [HR] 0.55, 95% CI: 0.29–0.86; P=0.017, log-rank) and the median OS for Arm A versus Arm B increased to 7.9 versus 3.4months with multiple cycles (HR 0.32, P=0.004), including three patients in Arm A surviving >1year.ConclusionsClinical studies of 90Y-clivatuzumab tetraxetan combined with low-dose gemcitabine appear feasible in metastatic pancreatic cancer patients beyond 2nd line and a Phase III trial of this combination is now underway in this setting

    Prolonged generalized immune response on 18F-FDG PET/CT following COVID-19 vaccination

    No full text
    The Coronavirus disease 2019 (COVID-19) pandemic continues to be a major public health concern affecting millions of people globally. The COVID-19 vaccination has implications in medical assessment of cancer patients especially undergoing diagnostic imaging such as 18F-fluoro-deoxyglucose (FDG) positron emission tomography with computed tomography (PET/CT). The inflammatory changes following vaccination can cause false positive findings on imaging. We present a case of a patient with esophageal carcinoma who had 18F-FDG PET/CT scan, 8 weeks following booster dose of Moderna COVID-19 vaccination, which showed widespread FDG avid reactive lymph nodes and intense splenic uptake for prolonged duration of approximately 8 months (34 weeks) probably representing generalized immune response. It is important from radiological/nuclear medicine perspective to recognize imaging features of such rare effect of COVID-19 vaccination, which can pose a challenge in assessing 18F-FDG PET/CT scans in cancer patients. It has also opened new avenues for future research evaluating such COVID-19 vaccine-related prolonged systemic immunological response in cancer patients
    • …
    corecore