54 research outputs found

    Microalgae as a biocathode and feedstock in anode chamber for a selfsustainable microbial fuel cell technology : a review

    Get PDF
    Abstract:Microbial fuel cell (MFC) technology has been investigated for over a decade now and it has been deemed as a preferred technique for energy generation since it is environmentally benign and does not produce toxic by/end products. However, this technology is characterized by low power outputs, poor microbial diversity detection, and the presence of methanogenic microorganisms, poor electrochemically active microorganisms’ enrichment techniques, and the type of electrode that is used, amongst others. Furthermore, this technology has relied mostly on reïŹned chemicals for energy production and this practice is not sustainable for long-term application of this technology. This paper reviews the use of a microalgae-assisted MFC for a self-sustainable microbial fuel cell where a microalgae-assisted cathode is established to facilitate the oxidation/reduction reactions (ORR) while recycling the generated algal biomass to the anode compartment as a feedstock for improved energy generation. Furthermore, this review proposes for the utilization of cell disruption techniques to maximize nutrient availability for maximal power generation while also making use of molecular diagnostic tools such as metagenomics and metatranscriptomics to monitor the microbial community structure and function

    The Effect of Modifications of Activated Carbon Materials on the Capacitive Performance: Surface, Microstructure, and Wettability

    Get PDF
    none7siopenKouao Dujearic-Stephane; Meenal Gupta; Ashwani Kumar; Vijay Sharma; Soumya Pandit; Patrizia Bocchetta; Yogesh KumarDujearic-Stephane, Kouao; Gupta, Meenal; Kumar, Ashwani; Sharma, Vijay; Pandit, Soumya; Bocchetta, Patrizia; Kumar, Yoges

    Eco-friendly synthesized nanoparticles as antimicrobial agents: an updated review

    Get PDF
    Green synthesis of NPs has gained extensive acceptance as they are reliable, eco-friendly, sustainable, and stable. Chemically synthesized NPs cause lung inflammation, heart problems, liver dysfunction, immune suppression, organ accumulation, and altered metabolism, leading to organ-specific toxicity. NPs synthesized from plants and microbes are biologically safe and cost-effective. These microbes and plant sources can consume and accumulate inorganic metal ions from their adjacent niches, thus synthesizing extracellular and intracellular NPs. These inherent characteristics of biological cells to process and modify inorganic metal ions into NPs have helped explore an area of biochemical analysis. Biological entities or their extracts used in NPs include algae, bacteria, fungi, actinomycetes, viruses, yeasts, and plants, with varying capabilities through the bioreduction of metallic NPs. These biosynthesized NPs have a wide range of pharmaceutical applications, such as tissue engineering, detection of pathogens or proteins, antimicrobial agents, anticancer mediators, vehicles for drug delivery, formulations for functional foods, and identification of pathogens, which can contribute to translational research in medical applications. NPs have various applications in the food and drug packaging industry, agriculture, and environmental remediation

    Latest Expansions in Lipid Enhancement of Microalgae for Biodiesel Production: An Update

    Get PDF
    Research progress on sustainable and renewable biofuel has gained motion over the years, not just due to the rapid reduction of dwindling fossil fuel supplies but also due to environmental and potential energy security issues as well. Intense interest in microalgae (photosynthetic microbes) as a promising feedstock for third-generation biofuels has grown over recent years. Fuels derived from algae are now considered sustainable biofuels that are promising, renewable, and clean. Therefore, selecting the robust species of microalgae with substantial features for quality biodiesel production is the first step in the way of biofuel production. A contemporary investigation is more focused on several strategies and techniques to achieve higher biomass and triglycerides in microalgae. The improvement in lipid enhancement in microalgae species by genetic manipulation approaches, such as metabolic or genetic alteration, and the use of nanotechnology are the most recent ways of improving the production of biomass and lipids. Hence, the current review collects up-to-date approaches for microalgae lipid increase and biodiesel generation. The strategies for high biomass and high lipid yield are discussed. Additionally, various pretreatment procedures that may aid in lipid harvesting efficiency and improve lipid recovery rate are described

    Biogenic Preparation, Characterization, and Biomedical Applications of Chitosan Functionalized Iron Oxide Nanocomposite

    Get PDF
    Chitosan (CS) functionalization over nanomaterials has gained more attention in the biomedical field due to their biocompatibility, biodegradability, and enhanced properties. In the present study, CS functionalized iron (II) oxide nanocomposite (CS/FeO NC) was prepared using Sida acuta leaf extract by a facile and eco-friendly green chemistry route. Phyto-compounds of S. acuta leaf were used as a reductant to prepare CS/FeO NC. The existence of CS and FeO crystalline peaks in CS/FeO NC was confirmed by XRD. FE-SEM analysis revealed that the prepared CS/FeO NC were spherical with a 10–100 nm average size. FTIR analyzed the existence of CS and metal-oxygen bands in the prepared NC. The CS/FeO NC showed the potential bactericidal activity against E. coli, B. subtilis, and S. aureus pathogens. Further, CS/FeO NC also exhibited the dose-dependent anti-proliferative property against human lung cancer cells (A549). Thus, the obtained outcomes revealed that the prepared CS/FeO NC could be a promising candidate in the biomedical sector to inhibit the growth of bacterial pathogens and lung cancer cells

    Synthesis and Characterization of Tetracycline Loaded Methionine-Coated NiFe2O4 Nanoparticles for Anticancer and Antibacterial Applications

    Get PDF
    In the present study, nickel ferrite (NiFe(2)O(4))-based smart magnetic nanoparticles were fabricated and coated with methionine. Physiochemical characterization of the obtained Met-NiFe(2)O(4) nanoparticles revealed the presence of methionine coating over the nanoparticle surface. Drug release study indicated that Tet-Met-NiFe(2)O(4) nanoparticles possess pH-responsive controlled drug release behavior for tetracycline (Tet). The drug loading content for Tet was found to be 0.27 mg/L of nanoparticles. In vitro cytotoxicity test showed that the Met-NiFe(2)O(4) nanoparticles is biocompatible. Moreover, this magnetic nanostructured material shown strong anticancer property as these nanomaterials significantly reduced the viability of A375 cells when compared to free Tet solution. In addition, Tet-Met-NiFe(2)O(4) nanoparticles also showed strong antibacterial activity against different bacterial pathogens

    Valorisation of CO 2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology

    Get PDF
    Microbial electrocatalysis reckons on microbes as catalysts for reactions occurring at electrodes. Microbial fuel cells and microbial electrolysis cells are well-known in this context; both prefer the oxidation of organic and inorganic matter for producing electricity. Notably, the synthesis of high energy-density chemicals (fuels) or their precursors by microorganisms using bio-cathode to yield electrical energy is called Microbial Electrosynthesis (MES), giving an exceptionally appealing novel way for producing beneficial products from electricity and wastewater. This review accentuates the concept, importance and opportunities of MES, as an emerging discipline at the nexus of microbiology and electrochemistry. Production of organic compounds from MES is considered as an effective technique for the generation of various beneficial reduced end-products (like acetate and butyrate) as well as in reducing the load of CO2 from the atmosphere to mitigate the harmful effect of greenhouse gases in global warming. Although MES is still an emerging technology, this method is not thoroughly known. The authors have focused on MES, as it is the next transformative, viable alternative technology to decrease the repercussions of surplus carbon dioxide in the environment along with conserving energy

    Microbiomics for enhancing electron transfer in an electrochemical system

    Get PDF
    In microbial electrochemical systems, microorganisms catalyze chemical reactions converting chemical energy present in organic and inorganic molecules into electrical energy. The concept of microbial electrochemistry has been gaining tremendous attention for the past two decades, mainly due to its numerous applications. This technology offers a wide range of applications in areas such as the environment, industries, and sensors. The biocatalysts governing the reactions could be cell secretion, cell component, or a whole cell. The electroactive bacteria can interact with insoluble materials such as electrodes for exchanging electrons through colonization and biofilm formation. Though biofilm formation is one of the major modes for extracellular electron transfer with the electrode, there are other few mechanisms through which the process can occur. Apart from biofilm formation electron exchange can take place through flavins, cytochromes, cell surface appendages, and other metabolites. The present article targets the various mechanisms of electron exchange for microbiome-induced electron transfer activity, proteins, and secretory molecules involved in the electron transfer. This review also focuses on various proteomics and genetics strategies implemented and developed to enhance the exo-electron transfer process in electroactive bacteria. Recent progress and reports on synthetic biology and genetic engineering in exploring the direct and indirect electron transfer phenomenon have also been emphasized
    • 

    corecore