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Abstract: Chitosan (CS) functionalization over nanomaterials has gained more attention in the
biomedical field due to their biocompatibility, biodegradability, and enhanced properties. In the
present study, CS functionalized iron (II) oxide nanocomposite (CS/FeO NC) was prepared using
Sida acuta leaf extract by a facile and eco-friendly green chemistry route. Phyto-compounds of S. acuta
leaf were used as a reductant to prepare CS/FeO NC. The existence of CS and FeO crystalline peaks
in CS/FeO NC was confirmed by XRD. FE-SEM analysis revealed that the prepared CS/FeO NC
were spherical with a 10–100 nm average size. FTIR analyzed the existence of CS and metal-oxygen
bands in the prepared NC. The CS/FeO NC showed the potential bactericidal activity against E.
coli, B. subtilis, and S. aureus pathogens. Further, CS/FeO NC also exhibited the dose-dependent
anti-proliferative property against human lung cancer cells (A549). Thus, the obtained outcomes
revealed that the prepared CS/FeO NC could be a promising candidate in the biomedical sector to
inhibit the growth of bacterial pathogens and lung cancer cells.

Keywords: chitosan; FeO; nanocomposite; antibacterial; anticancer

1. Introduction

Nanomaterials have received significance in developing new and different industrial
applications due to their unique shape, size, and high surface area to volume ratio [1–3].
In biomedical industries, various approaches have been used to develop a new path to
control and prevent microbial infections using novel nanoparticles (NPs). Many literature
studies have demonstrated the significant bactericidal properties of NPs against bacterial
pathogens [4–6]. However, antibacterial resistance is the key problem in the biomedical
field, increasing the severity of bacterial infections that can indicate the requirement of novel
antibacterial agents against those drug-resistant and severe infection-causing pathogens.
Previous reports revealed that the metallic NPs and NCs could be better alternative antibac-
terial agents like natural and synthetic antibiotics [7–11]. Different NPs and NCs have been

J. Compos. Sci. 2022, 6, 120. https://doi.org/10.3390/jcs6050120 https://www.mdpi.com/journal/jcs

https://doi.org/10.3390/jcs6050120
https://doi.org/10.3390/jcs6050120
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcs
https://www.mdpi.com
https://orcid.org/0000-0002-2068-2446
https://orcid.org/0000-0001-7438-0200
https://orcid.org/0000-0001-8045-4675
https://orcid.org/0000-0001-9127-4469
https://orcid.org/0000-0002-0790-2264
https://orcid.org/0000-0002-3346-910X
https://doi.org/10.3390/jcs6050120
https://www.mdpi.com/journal/jcs
https://www.mdpi.com/article/10.3390/jcs6050120?type=check_update&version=1


J. Compos. Sci. 2022, 6, 120 2 of 11

utilized in the textile coating, cosmetics, food, and paint industries, which interestingly
showed a high prospective to solve the antibiotic resistance problem [12–17].

Currently, NPs and NCs synthesized using plants by green chemistry route have
been received the focus of interest for their various applications in biological, pharmaceu-
tical, and food industries, because of the unique physicochemical properties, less toxic,
eco-friendly, economic, and easy scale-up [18–21]. Iron (II) oxide nanoparticles (FeO
NPs) are typically interesting in modern green nanotechnology because of their super-
paramagnetic properties, high magnetic susceptibility, superior catalytic and bactericidal
properties [22,23]. Additionally, researchers have been focusing on the functionalization of
CS over FeO NPs to enhance the physio-chemical and biological properties [24].

Among the various natural biopolymers, several researchers have focused on chitosan
as a potential functional biomaterial for its biocompatibility, biodegradability, non-toxicity,
and bacteriostatic properties [25]. Previous reports demonstrated the chitosan’s utilization
for surface functionalization of metal and metal oxide NPs [26,27]. Apart from the antibiotic
properties, several reports demonstrated the anti-cancer and antioxidant properties of CS
and chitosan-functionalized NPs [28,29]. Many studies have revealed that the CS function-
alized biomaterials can be prepared as a nanostructured anti-cancer drug carrier [30]. From
this significance, the present study aimed to prepare CS/FeO NC using the Sida acuta plant.
S. acuta belongs to the family of Malvaceae and has many pharmacological properties [31].
Further, the prepared CS/FeO NC was characterized and assessed its bactericidal and
anti-proliferative properties.

2. Materials and Methods
2.1. Sources and Materials

High-pure chitosan (deacetylation degree: ≥75%, MW: 190–375 kDa), iron (II) sulfate
(Purity ≥ 99.0%), and nutrient broth (Quality level = 200) were procured from Sigma-
Aldrich. S. acuta leaves were collected from the Bharathiar University campus, Coimbatore,
and authenticated by BSI (SRC/5/23/2020/650).

2.2. S. acuta Leaf Extraction

Freshly collected leaf parts of S. acuta were cleaned with tap water and dried. About
1 g of dried leaf sample was mixed with 100 mL of distilled water and heated at 100 ◦C for
15 min, and then the extracted solution was filtered and used for the biogenic preparation
of CS/FeO NC (Figure 1).

2.3. Biogenic Preparation of CS/FeO NC

CS (0.5 g) was dissolved into 1% (v/v) acetic acid (50 mL) followed by the addition
of 0.5 M iron (II) sulfate (25 mL) and S. acuta leaf extract (25 mL), and vigorously stirred
under 60 ◦C for 30 min. Further, the resultant was centrifuged at 12,000 rpm for 10 min and
air-dried at 80 ◦C to obtain the final CS/FeO NC.

2.4. Physicochemical Characterization

The optical, morphological, and chemical properties of CS/FeO NC were character-
ized by UV-vis spectroscopy (JASCO-V-670), X-ray Diffraction XRD (PANalytical X’pert
Pro, Malvern, UK), and field emission-scanning electron microscopy (TESCAN-MIRA3)
attached with energy-dispersive X-ray spectroscopy (EDS), and Fourier transform infrared
spectroscopy (FTIR-00585, PerkinElmer, New Delhi, India).
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Figure 1. Preparation of S. acuta aqueous leaf extract utilized for the biogenic synthesis of
CS/FeO nanocomposite.

2.5. Antibacterial Assay

Spectrophotometer turbidimetry technique was used to analyze the antibacterial activ-
ity of CS/FeO NC. S. aureus, B. subtilis, and E. coli were used as test bacterial pathogens.
Bactericidal properties of CS/FeO NC were evaluated in nutrient broth using the opti-
cal density (570 nm) measurement method. The bacterial concentration was diluted to
105 CFU/mL. CS/FeO NC was added into the bacterial suspension at a 50 µg/mL con-
centration and incubated overnight. The bacteriostatic rate (%) was calculated as follows
Equation (1),

Bacteriostatic rate (%) = (control O.D.value − test sample O.D. value ÷ control O.D. value)× 100 (1)

2.6. Antiproliferative Activity of CS/FeO NC

Antiproliferative property of prepared CS/FeO NC was evaluated by
3-[4, 5–96 dimethylthiazole-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, as demon-
strated previously by Seetharaman et al. (2017) [32]. Lung cancer cells (A549) were procured
from NCCS, Pune, India, and grown in a medium containing fetal bovine serum (10%) and
antibiotics (1%) in a CO2 incubator under standard conditions. The grown cells (100 µL) at
a density of 1 × 103 were loaded on a culture plate and incubated at 37 ◦C with 5% CO2
overnight. Then, various concentration of CS/FeO NC (10, 25, 50, 100, 150 and 200 µg/mL)
were added into respective wells and re-incubated. After that, the media was replaced with
10 µL of MTT (5 mg/mL) and again incubated. Further, the MTT solution was removed,
and 100 µL of DMSO was added and incubated. The absorbance value was measured
using a BioRad-680 plate reader at 570 nm, and the viability percentage was calculated
Equation (2).

Viability (%) = Treated cells/Control cells × 100 (2)

where C is the control cell’s value, and T is the value of the treated cell.
Furthermore, inducing apoptosis by CS/FeO NC against A549 cells was studied by

AO/EtBr fluorescent staining technique, as demonstrated previously by Bharathi et al. [33].
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2.7. Statistical Analysis

All in vitro tests were performed three independent times in triplicates (n = 3), and
the obtained data were represented as mean ± standard deviation. The significance level
was analyzed at p < 0.05.

3. Results
3.1. Fabrication of CS/FeO NC

Biogenic conversion of iron (II) sulfate to CS/FeO NC was initiated by mixing of FeSO4
and CS with S. acuta aqueous leaf extract, which also stimulated the color change from
yellowish to black, and thus supported the development of CS/FeO NC (Figure 2(Aa)).
Similarly, Boudouh et al. (2021) [34] documented the exhibition of black color during the
fabrication of FeO NPs. Secondary metabolites present in S. acuta leaf extract and free
amino, and hydroxyl groups existing in CS might have joined with ferrous ions (FeII)
and formed Fe-ellagate conjugate. Simultaneously, the formed conjugate leads to the
nucleation that goes into reverse micellization, which later causes the reduction of Fe+ to
nano-FeO [35].
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mediated CS/FeO NC.

3.2. Physicochemical Properties of CS/FeO NC
3.2.1. UV-Visible Spectroscopy Analysis

The optical properties of CS/FeO NC were analyzed by UV-vis spectroscopy. The
CS/FeO NC has displayed a maximum absorbance peak at 382 nm (Figure 2(Ab)) and thus
indicated a convenient surface plasmon resonance character for FeO nanoparticles. The
obtained findings corresponded to Bibi et al. (2019) [36] and Abdullah et al. [37].

3.2.2. XRD Analysis

As shown in Figure 2B, the obtained 2θ peaks around 28.9◦, 35.7◦, 40.5◦, 53.1◦, 54.3◦,
61.5◦, 70.7◦, and 73.3◦ were corresponded to (220), (311), (400), (422), (511), (440), (620)
and (533) orientations, which are revealed that the CS/FeO NC are having a typical cubic
magnetite crystallite (Fe3O4) arrangement and also matched with the JCPDS number #
019-0629 [38]. The obtained other peaks at 2θ = 21.0 and 26.0 may be exhibited due to
the CS crystallization over CS/FeO NC and consequently revealed the establishment of
organic/inorganic NC. The other peaks may be raised from organic phases in the CS/FeO
complex [26]. Further, the crystalline size of CS/FeO NC was calculated using Scherrer’s
equation, as described previously by [36], and was found to be 18 nm.
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3.2.3. FTIR Analysis

The FTIR spectra of CS/FeO NC, CS, S. acuta is shown in Figure 3. S. acuta IR
spectra exhibited free O-H stretching groups at 3728 cm−1, 3609 cm−1, and 948 cm−1,
C–H vibrations near 2988 cm−1, 2884 cm−1, 2361 cm−1, 1391 cm−1 and 676 cm−1, N–H
bands around 1663 cm−1, 1552 cm−1, and C–Br vibrations near 575 cm−1, 530 cm−1 and
467 cm−1 assigned to the carboxylic, phenolic and amine functional groups present in
leaf extract [39,40]. CS FTIR spectra showed a typical amine stretches near 1656 cm−1 and
1395 cm−1, hydroxyl bands at 3633 cm−1, 669 cm−1, and 624 cm−1, C-C and C=O vibrations
around 1552 cm−1, 941 cm−1, and 903 cm−1, and C–H bands near 844 cm−1, 572 cm−1 and
460 cm−1 were attributed to the amine groups and acetylated groups of CS [41,42]. CS/FeO
NC IR spectra revealed the presence of O–H bands around 1080 cm−1, and 958 cm−1,
C–H bands at 2976 cm−1, 2889 cm−1, 1255 cm−1 and 1150 cm−1, N-H and C=O bands
at 1384 cm−1, Fe–O bands at 689 cm−1, 644 cm−1, 546 cm−1, 487 cm−1, 410 cm−1 [43].
Moreover, evaluation of CS/FeO NC with other FTIR showed that certain changes in the
band positions and intensity may be attributed to the interface of CS and leaf extract with
iron (II) sulfate during the formation of NC. The FTIR results revealed that the existence of
those functional groups derived from S. acuta leaf and CS might have acted as a reductant
for the conversion of iron (II) sulfate to nano FeO.

3.2.4. FE-SEM and EDS Analysis

FESEM analyzed the morphological features of prepared CS/FeO NC. The FE-SEM re-
vealed that the prepared NC was spherical with an average size of 10–100 nm (Figure 4a,b).
Following our study, Pérez-Beltrán et al. (2021) [44] demonstrated that the SEM investi-
gation of FeO NPs displayed a spherical shape. The elemental configuration of CS/FeO
NC was identified by EDS analysis. EDS showed the peaks of Fe (45.90%) together with O
(39.50%), C (7.13%), Na (1.40%), and S (6.07%) (Figure 4c), which obviously confirms the
development of CS/FeO NC [45]. Similarly, Bibi et al. (2019) [36] reported the detection of
Fe, O, and C elements in the synthesized FeO NPs using P. granatum.

3.3. Bactericidal Activity

The bactericidal property of prepared CS/FeO NC was analyzed using the broth
dilution technique. As shown in Figure 5A, CS/FeO NC showed remarkable bactericidal
properties against B. subtilis, S. aureus, and E. coli. S. acuta leaf extract exhibited potential
bacteriostatic inhibition against the chosen pathogens, and CS showed moderate inhibition
activity. The bactericidal activity was higher in the case of CS/FeO NC compared to that of
S. acuta and CS. However, prepared CS/FeO NC showed higher ZOI against E. coil than B.
subtilis and S. aureus. Similarly, Das et al. (2020) [46] demonstrated that the synthesized
FeO NPs exhibited potential bactericidal against S. aureus, P. vulgaris, and P. aeruginosa.
The FeO NPs synthesized using leaf extract of A. spinosus exhibited bactericidal activity
against E. coli and B. subtilis [47]. The bactericidal activity of CS/FeO NC may be due to
cell membrane disruption by the generation of ROS, which causes cell death [33].
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3.4. Anti-Proliferative Property of CS/FeO NC

The anti-proliferative property of prepared CS/FeO NC was determined by MTT assay
against A549 cells. The obtained result revealed that the CS/FeO NC was a concentration-
dependent inhibitor for A549 cells (Figure 5B). In our study, 16% inhibition was seen
at 10 µg/mL and 94% inhibition was found to be at 200 µg/mL concentration. Prepared
CS/FeO NC induced 50% (IC50) of growth suppression property at the concentration of
82 ± 0.50 µg/mL. Similar to our study, biosynthesized silver nanoparticles from Caulerpa
taxifolia also showed the concentration-dependent anti-lung cancer activity [48]. In addition,
the A549 cell proliferation was observed using fluorescence microscopy. Fluorescent
microscopic observation of AO/EtBr stained A549 cells is shown in Figure 6a,b. The control
cells showed green color, and CS/FeO NC treated cells exhibited red color. The observed,
red-colored bodies revealed the cell damage, membrane blebbing, and the presence of
apoptotic bodies. Similarly, recent studies demonstrated the anti-cancer properties of FeO-
based nanomaterials against various cancer cells [49,50]. The antiproliferative property
of CS/FeO NC depends on Fe ions permeability into cells, which induces cell damage,
nuclear fragmentation, and apoptosis.
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4. Conclusions

This study has employed an eco-friendly and green chemistry way for the CS/FeO
NC preparation. The development of CS/FeO NC has been analyzed by UV-vis, XRD,
FE-SEM, EDS, and FTIR. Prepared CS/FeO NC showed remarkable bactericidal properties
against E. coli, B. subtilis, and S. aureus. However, CS/FeO NC exhibited higher bactericidal
properties against E. coli than other pathogens due to the permeability nature of bacterial
cells. Furthermore, CS/FeO NC has efficiently suppressed the growth of A549 cells in a
concentration-dependent way and stimulated the apoptosis in A549 cells. In conclusion,
this study demonstrated that the eco-friendly prepared CS/FeO NC using S. acuta leaf
could be used as a novel biomaterial to inhibit pathogens and lung carcinoma cells.
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