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Abstract: Research progress on sustainable and renewable biofuel has gained motion over the years, 
not just due to the rapid reduction of dwindling fossil fuel supplies but also due to environmental 
and potential energy security issues as well. Intense interest in microalgae (photosynthetic mi-
crobes) as a promising feedstock for third-generation biofuels has grown over recent years. Fuels 
derived from algae are now considered sustainable biofuels that are promising, renewable, and 
clean. Therefore, selecting the robust species of microalgae with substantial features for quality bi-
odiesel production is the first step in the way of biofuel production. A contemporary investigation 
is more focused on several strategies and techniques to achieve higher biomass and triglycerides in 
microalgae. The improvement in lipid enhancement in microalgae species by genetic manipulation 
approaches, such as metabolic or genetic alteration, and the use of nanotechnology are the most 
recent ways of improving the production of biomass and lipids. Hence, the current review collects 
up-to-date approaches for microalgae lipid increase and biodiesel generation. The strategies for 
high biomass and high lipid yield are discussed. Additionally, various pretreatment procedures 
that may aid in lipid harvesting efficiency and improve lipid recovery rate are described. 

Keywords: microalgae; biodiesel; genetic modification; nanoparticles; pretreatment methods 
 

1. Introduction 
Algae is the world’s largest photosynthetic group that contributes most of the carbon 

sequestration on the globe, converting greenhouse gases into carbohydrates and lipids. 
These photosynthetic microbes have received high attention as potential cell factories for 
fatty acids (FA) and carotenoid production. Microalgae oil is used as biodiesel and has 
significant advantages over vegetable oils. Biodiesel acquired from microalgae is sulfur-
free and releases low hydrocarbon, CO, NOx [1], and Sox emissions in contrast to tradi-
tional petroleum diesel [2,3]. However, cultivation conditions, harvesting, and cost reduc-
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tion is a key barrier to its practical commercialization [4]. Biofuel production from micro-
algae alone does not satisfy the economic feasibility. Hence, to improve the budget and 
reduce the cultivation cost, the source could be utilized in many ways, such as wastewater 
treatment, sewage treatment, CO2 sequestration [5]. Its co-products (protein, carbohy-
drates, pigments, vitamins, and antioxidants) could further be utilized in the pharmaceu-
tical and nutraceutical industries [6,7]. 

Under positive growing conditions, microalgal species typically accumulate lipids 
between 10% and 30% of their dry weight. Some species of algae have been documented 
to yield greater amounts of lipids (56% in Nannochloris sp. 80% in Schizochytrium sp.). On 
the other hand, Chlorella sp. and Scenedesmus sp. have comparatively less lipid content but 
a greater growth level [8,9]. Concerning conditions required for optimum growth and li-
pid accumulation, algae strains have been reported to have contradictory behavior [10]. 
To obtain the cost-effective biodiesel cultivation of numerous low-lipid cells or a few high-
lipid cells will not lead to the economically sustainable production of microalgae-derived 
biofuel [11]. Thus, appropriate strategies should be implemented to rectify these opposing 
traits so an ideal equilibrium between microalgae biomass and lipid content can be main-
tained [12,13]. Genetic engineering in microalgae offers a lot of possibilities to expand the 
procedure (Figure 1). Rapid advancements in the synthesis of DNA, tools and methods 
for genetic manipulation, and the accessibility of functioning genomes have expanded the 
potential for improved engineering in microalgae in recent years. Different environmen-
tal, nutritional, and physiological conditions have also been tried for microalgae cultiva-
tion to improve lipid production. Additionally, nanoparticles (NPs) have been widely 
used as an effective method to resolve barriers and technological limitations regarding the 
two stages [14]. The successful retrieval and recycling of NPs using economic and cost-
effective technologies is a critical component of microalgae harvesting research. This re-
view is a comprehensive study of basically two recent techniques, genetic engineering 
approaches and the application of nanoparticles for lipid enhancement, simultaneously 
using various pretreatment methods of lipid recovery to overcome bottlenecks of bio-
diesel production. 

 
Figure 1. Genetically modified microalgae improve lipid content. 
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2. Genetic Engineering in Microalgae 
Over the years, a balance has been pursued between increasing the lipid percent of 

microalgae by various methods while concurrently maintaining lipid productivity. Stor-
age lipids in microalgae are usually neutral or triacylglycerides (TAGs) [15]. TAGs are 
biosynthesized in plastids, mitochondria, and the endomembrane and have esterified FA 
chains linked to the hydroxyl groups of the glycerol backbone. Specific genes that code 
for components of a metabolic pathway can be altered through genetic engineering in mi-
croalgae strains to improve the metabolites synthesis [16]. Methods such as zinc finger 
nucleases (ZFN), homologous recombination (HR), and transcription activator-like effec-
tor nucleases (TALEN) have been utilized to change the genetic makeup of eukaryotic 
cells [17,18]. However, putting these approaches into practice is time-consuming, difficult, 
and costly. TAG and FA synthesis involved a series of reactions driven by a variety of 
enzymes. Overexpression of these enzymes resulted in an increase in their function, which 
would positively promote lipid accumulation [19]. Genetically modified microalgae, such 
as Dunaliella salina, Chlamydomonas reinhardtii, and Pharodactylum tricornutum, were ex-
plored to boost FA synthesis, and consequently, lipid accumulation [20]. Some microalgae 
strains and overexpression of genes responsible for lipids biosynthesis are summarized in 
Table 1. Moreover, it has been opined that genetically engineered microalgae may change 
other biosynthetic pathways, which could produce toxicity and could affect other benefi-
cial microbes and the environment. Therefore, before releasing genetically altered micro-
algae, it must be examined and approved by international committees [21]. A strategy 
such as biodiesel production in a closed photobioreactor could be promoted applied to 
avoid risk [22]. 

Table 1. Overexpression of genes/enzymes resulted in lipid enhancement in microalgae species. 

S. No. Microalgae Species Genes/Enzymes Lipid Enhancement References 

1. Chlamydomonas rein-
hardtii ACCase Overexpression 2.4-fold increase in TAGs [23] 

     

2. Phaeodactylum tricor-
nutum 

G6PD Overexpression 55.7% increase in lipid [24] 

3. P. tricornutum GPAT1; LPAT1 Overexpres-
sion 

2.3-fold increase in TAGs in N-deple-
tion 

[25] 

4. P. tricornutum G3PDH Overexpression 1.9-fold increase in neutral lipid with 
slight decline in growth 

[26] 

5. P. tricornutum G6PD Overexpression 2.7-fold increase in lipid content [27] 
6. Chlorella protothecoides ME Overexpression 2.8-fold increase in total lipid content [28] 

7. C. reinhardtii  PSR1 Overexpression 
Increase in starch granules, decrease 

in neutral lipid content [29] 

8. Nannochloropsis salina bZIP Overexpression Improvement in growth and lipid  [30] 
9. C. reinhardtii DGTA Overexpression   Enhanced saturated fatty acids [31] 

10. Chlorella minutissima GPAT; LPAAT; DGAT Over-
expression 

2-fold increase in lipid content [32] 

11. N. oceanica NoDGAT1A Overexpression 2.4-fold increase in TAGs accumula-
tion 

[33] 

12. C. pyrenoidosa NAD(H) kinase Overexpres-
sion  

1.6 times increase in lipid content [34] 

13. C. reinhardtii  LPAAT Overexpression  20% increase in TAGs [35] 



Energies 2022, 15, 1550 4 of 14 
 

 

14. T. pseudonana 

Knock-down of a multifunc-
tional lipase/phospho-

lipase/acetyltransferase en-
zyme 

2.4–3.3-fold higher lipids in contrast to 
wild-type 

[36] 
 

15. Nannochloropsis ocean-
ica 

DGAT Overexpression 69% increase in total lipids [37] 

GPAT: Glycerol-3-phosphate aceyltransferase; LPAT: Lysophosphatidic aceyltransferase; DGAT: 
Diacylglycerol aceyltransferase; N: Nitrogen; ME: Malic enzyme; ACCase: Acetyl-CoA carboxylase; 
LPAAT: Lysophosphatidic acid acyltransferase; G3PDH: Glyceraldehyde-3-phosphate dehydro-
genase; G6PD: Glucose-6-phosphate dehydrogenase and DGAT: acyl-Co-A: diacylglycerols acyl-
transferase. 

3. Regulation of Biosynthetic Pathways 
The restriction of metabolic pathways that promote the storage of energy-rich com-

pounds is another approach that leads to the increase in cellular lipid content [38]. In mi-
croalgae, starch and lipid synthesis share a common precursor [39]. When the biosynthesis 
of the starch pathway is blocked, carbon flux is diverted towards the lipid biosynthetic 
pathway, resulting in a rise in FA, consequently raising total FAs [40]. The ADP-glucose 
pyrophosphorylase or isoamylase genes, sta6 and sta7 mutants, were disrupted, respec-
tively, in two separate starch-deficient C. reinhardtii strains [41,42]. During the period of 
N deprivation, these mutants accumulated higher quantities of TAGs [43]. The starchless 
mutant of Chlorella pyrenoidosa is reported to have higher polyunsaturated FAs [44]. 

3.1. Shift of Starch Pathway to Lipid Pathway 
In photosynthetic cells, starch and triglycerides are the main carbon storage compo-

nents, and lipid and starch production proceed via competing metabolic processes. Mi-
croalgae change their lipid biosynthetic pathways as a carbon and energy storage form in 
adverse conditions (stress) to accumulate higher TAGs [45,46]. Fan et al. [47] stated carbon 
availability is a critical metabolic component influencing lipid production and carbon seg-
regation among starch and lipids. TAG content was found to be much greater (up to three 
times against control) in starch-deficient Dunaliella tertiolecta mutants after N-depletion 
[48]. The blocking of starch biosynthesis pathways increased lipid accumulation in Chlo-
rella sp. and Chlamydomonas is perceived in various studies [43,44,49,50]. Though the met-
abolic process in microalgae that controls carbon splitting from starch to lipids is still un-
clear, investigations are underway harnessing the mechanism behind the shift of path-
ways. Ho et al. [51] investigated the molecular mechanisms underlying the shift from 
starch to lipid biosynthesis in Chlamydomonas sp. JSC4 and measured the upregulation in 
the expression of genes encoding enzymes for lipid synthesis Acetyl-CoA carboxylase 
(ACCase), pyruvate decarboxylase, acetyl-CoA-synthetase, acetaldehyde dehydrogenase, 
and genes involved in starch degradation (starch phosphorylases). 

3.2. Overexpression of Gene/Enzymes Involved in the Lipid Biosynthesis Pathway 
The main enzyme involved in the precursor formation and lipid synthesis are AC-

Case, ATP citrate lyase (ACL), glycerol-3-phosphate (GPAT), lysophosphatidic acid acyl-
transferase (LPAAT), phospholipid: diacylglycerols acyltransferase (PDAT), and acyl-Co-
A: diacylglycerols acyltransferase (DGAT) [52–54]. The expression of these gene-encoding 
enzymes determines lipid content, and the regulation of these genes affects lipid content 
[55,56]. Additionally, enhanced lipid accumulation was documented due to the knock-
down/overexpression of transcription factors that target the upregulation of lipid biosyn-
thetic genes. Certain related work is also briefly summarized in Table 1. Acetyl-CoA car-
boxylase (ACCase) is a common and important enzyme responsible for the increase of the 
accumulation of lipid in microalgae. It is the first rate-limiting step in FA biosynthesis, 
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which accelerates TAGs synthesis. In lipid synthesis, the conversion of Acetyl-CoA to mal-
onyl-CoA is regulated by ACCase. The overexpression of the gene (ACCase) is one of the 
effectively applied techniques that can be used to improve FAs in microalgae. A previous 
study revealed that the overexpression of ACCase affected lipid accumulation less [57]. 
However, coordinated overexpression with the ACCase subunit (accD) of malic enzyme 
(ME) was able to raise the lipid productivity of Dunaliella salina [58]. Likewise, overex-
pression of the ME enhanced Phaeodactylum tricornutum lipid output by 2.5-fold without 
adversely affecting the growth rate [59]. Genes associated with the synthesis of lipids were 
knocked out and overexpressed in prior work to see how they affected lipid accumulation 
in microalgae. ACCase encoding the FA enzyme synthesis was first over-expressed in a 
diatom, Cyclotella cryptica, by Dunahay et al. in 1996 [60]. Chimeric plasmid vectors were 
used for random recombinant DNA integration, and copies of multiple genes were in-
serted [60]. Although ACCase overexpression resulted in a 2–3-fold increase in ACCase 
activity, it did not affect FA synthesis [61]. C. cryptica has been credited with considerable 
genetic potential for hyper-lipid production, as compared to related diatom Thalassiosira 
pseudonana. The genomic study revealed increased expression of critical lipogenesis genes 
and expansion of TAG biosynthesis enzymes significantly [62]. The initial report of AC-
Case overexpression in C. reinhardtii, performed through the insertion of an overexpres-
sion vector, demonstrated that this technique can result in higher ACCase activity with 
better FA production [63]. However, it has been shown that the upregulation of ACCase 
in conjunction with malic enzymes, which catalyze the conversion of malate to pyruvate, 
increases lipid accumulation in D. Salina [58]. In Phaeodactylum tricornutum (PtACC2) mi-
croalgae, ACCase modification raised ACCase activity by 3.3-fold and led to a 1.77-fold 
rise in lipids, reaching 40.8% dry biomass [64]. Diacylglycerol acyltransferase (DGAT) 
overexpression, which catalyzes the last stage of TAGs biosynthesis, led to lipid enhance-
ment [37]. The expression of multifunctional enzymes phospholipase/lipase/acyltransfer-
ase was inhibited, increasing higher lipid storage without sacrificing the growth of T. pseu-
donana [65]. It is understood that transcriptional regulation can affect the metabolomics 
flow of the system because transcription factors in a metabolic pathway can mark numer-
ous regulatory points. In N. gaditana, knocking down a single ZnCys transcriptional reg-
ulator caused a 2-fold increase in lipid content [66]. Moreover, silencing the cht7 gene, 
which encodes TAG lipase, resulted in a 10-fold rise in TAGs [67]. 

4. CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) 
Recent advancements in gene-editing technologies, particularly CRISPR/Cas9, could 

result in gene alterations in commercially relevant microalgae strains (Figure 1). Genome 
editing involves modifying DNA in a sequence-specific manner via integrations, dele-
tions, and insertions. In an experiment, gene manipulation was performed in C. vulgaris 
using the CRISPR/Cas9 method. For which a Cas9 fragment was constructed with engi-
neered sgRNA in the omega-3 fatty acid desaturase (fad3) gene, resulting in a 46% (w/w) 
increase in lipid accumulation in the strain [68]. The Cas9 method was used to perform a 
target-specific knockout of the phospholipase A2 gene in Chlamydomonas reinhardtii. Sub-
sequently, the mutants displayed an increased pool of diacylglycerol accompanied by a 
greater TAGs accumulation without extensively compensating the growth of the cells. 
Thus, the average lipid productivity of knockout mutants with phospholipase A2 in-
creased up to 64.25% (80.92 g.L−1.d−1) [69]. CRISPR-Cas9 outperforms TALEN and ZFN 
because of its ease, adaptability, reduced price, and increased specificity [70]. Regardless 
of this, the most well-studied model of C. reinhardtii (freshwater green microalgae) had 
relatively little success [18,64,71]. In a recent study, a fragment of mGFP was transferred 
using Agrobacterium tumefaciens plasmid-mediated transfer to Chlorella vulgaris and C. so-
rokiniana FSP-E by electroporation, respectively. An increase of 67% fluorescence was ob-
served against a wild-type strain by inverted fluorescence microscopy. Subsequently, a 
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plasmid-containing Cas 9 fragment with sgRNA targeting the omega-3 fatty acid desatu-
rase (fad3) gene was created. Higher lipid accumulation (46% w/w) in C. vulgaris was per-
ceived and considered as the first successful gene manipulation in Chlorella [68]. 

5. Alteration of Fatty Acid Composition 
Aside from the use of genetic engineering for lipid enhancement, it is also necessary 

to consider lipid quality in terms of aptness as a feedstock for fuel production. The length 
of the carbon chain and the degree of unsaturation (double bond) in acyl composition are 
equally responsible for the determination of biodiesel properties. Natural microalgae syn-
thesize a broad range of fatty acids [72]. Biodiesel with shorter chain FAs (C10–C12) im-
proves cold flow properties. Therefore, the isolation of genes encoding unique shorter-
chain acyl-ACP thioesterases may be beneficial and of great importance for decreasing the 
chain length of fatty acyl groups in oil extracted from microalgae. The first positive exam-
ple of such a gene alteration attempt was demonstrated in a diatom where two genes en-
coding the plant-based acyl-ACP thioesterase in P. tricornutum were over-expressed by 
researchers from the Colorado School of Mines (USA) to generate a medium FA chain in 
the oil fraction [73]. 

6. Role of Nanoparticles 
6.1. In Lipid Induction 

Nanotechnology is the science, engineering, and technology that is measured in na-
noscale (100 nm or less) [74]. Various types of metallic nanoparticles (MNPs), ranging 
from 5 to 100 nm have been explored due to their diverse physical and chemical properties 
than the same metals on a macroscopic scale [75,76]. The exceptional physiochemical be-
havior of MNPs has allowed them to be approached in several ways, comprising the food 
industry, drug delivery, cosmetics, and synthesis of multifunctional biomaterials [77]. The 
ability of NPs to boost the gas–liquid mass transfer rate in fermentation is a relatively new 
application of NPs [78,79]. According to the concept, the presence of NPs boosts the mass 
transfer coefficient at the gas–liquid interface [80]. Hence, rising CO2 concentrations may 
alter growth rate and lipid stimulation in some microalgae. Few MNPs, such as Au, Ag, 
ZnO, CuO, Pd, Se, and FeO, are highly toxic to various organisms [81–86]. The toxic effect 
of NPs is also observed in microalgae, and it is connected with the reactive oxygen species 
(ROS) generation and the stimulation of oxidative stress, which is attained when the 
amount of NP reaches an effective level [82–84]. Some experts stated that when microalgae 
are encountered with sufficient doses of NPs, they can generate oxidative stress, and con-
sequently, increase lipid synthesis in microalgae [77,87,88]. Recently, He et al. studied the 
impact of carbon nanotubes (CNT), α-Fe2O3 and MgO NPs were tested in Scenedesmus 
obliqus. It was noticed that exposure to 5 mgL−1 CNT, 5 mgL−1 α-Fe2O3, and 40 mgL−1 MgO 
NPs resulted in increased lipid up to 8.9%, 39.6%, and 18.5%, respectively. Moreover, 
when microalgae encountered high doses of NPs, a reduction in microalgae growth and 
lipid enhancement was observed, owing to the high amount of ROS that induced cell 
death [77]. Nanomaterials have several hundred times more surface area than their corre-
sponding macroscale material weight. The surface area is not only significantly increased, 
but also the elasticity, persistence, strength, and electricity are improved. The utilization 
of nanomaterials could increase and potentially achieve lipid extraction efficiency without 
harming microalgae. In the transesterification process of lipids, nanomaterials, for exam-
ple, CaO and MgO NPs, have been used as biocatalyst carriers or as heterogeneous cata-
lysts [89]. Competitive inhibition, non-competitive inhibition, and denaturation are all 
ways that NPs might selectively inhibit enzyme activity [89] (Figure 2). As a result, fabri-
cating NPs with specific characteristics to bind specific enzymes or proteins could allow 
for the regulation of their activity. To avoid non-specific binds and aid in recognition of 
specific enzymes or biomolecules, functionalizing NPs by altering their enormous surface 
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area with organic molecules through covalent or non-covalent interactions has been sug-
gested [90]. In this case, a substantial study is required to record and verify the molecular 
process of binding of a specific NP (with specified properties) with AGPase enzyme to 
facilitate, block, or inhibit the enzyme’s activity, hence inhibiting the starch manufactur-
ing pathway [91]. This technique will aid in overcoming the lipid production bottleneck 
in microalgae, resulting in increased biofuel output. 

 
Figure 2. Nanoparticles trigger lipid synthesis and harvesting efficiency. 

6.2. Harvesting of Microalgae 
Microalgae-based biodiesel manufacturing on a large scale is one way to address en-

ergy constraints [92]. The collection of microalgae cells is another obstacle that interrupts 
the commercial development of algae-based biodiesel. Thus, the establishment of an effi-
cient method of harvesting is important for the urgent need to bring about a significant 
reduction of the operation cost. In the photobioreactor culture procedure, the magnetic 
NP powder is used in the microalgae cell suspension to flocculate the cells for the even 
dispersal of nutrients and light throughout the reactor (Figure 2). An additional well-
known technique for enhancing cell suspension is immunomagnetic identification and 
manipulation of microalgae cells from NP. It is difficult to separate algae from a large 
volume of growing medium. Various harvesting techniques have been developed using 
an attached culture device, such as flotation, filtration, coagulation, flocculation, centrifu-
gation, and scratching [93,94]. Although, because of their low concentration, these tradi-
tional harvesting processes do have some limitations. Therefore, creating an effective tech-
nology to extract small algae cells from highly diluted solutions remains a challenge [95]. 
The harvesting of Nannochloropsis sp. is more difficult due to its smaller diameter com-
pared to other microalgae [96]. 

Another method, magnetic separation, has been now applied due to its benefits, such 
as easy process, energy efficiency, quick separation, and minimum operating costs [97]. 
Silica coating in magnetic NPs or cationic polyelectrolyte was tested to harvest marine and 
freshwater microalgae [95,98]. Chlorella ellipsoidea and Botryococcus braunii were collected 
from freshwater using bare Fe3O4 NPs [97]. The evaluation of the harvesting effectiveness 
of Nannochloropsis sp. using Fe3O4 NPs is of great importance in contrast to freshwater 
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microalgae. Some essential process parameters for magnetic NPs for microalgal harvest-
ing technologies, such as algal growth phase, harvesting temperature, and medium reus-
ability, are yet unknown. 

7. Pretreatment Methods 
Pretreatment is an important step in restoring biomass composition for optimal bio-

fuel production. It is crucial to disrupt the cell wall of microalgae to stimulate the release 
of inner substances, including lipids, proteins, carotenoids, and carbohydrates, into the 
medium [99]. Figure 3 depicts various pretreatment strategies for lipid extraction from 
microalgae. To solubilize the microalgae cell wall, a chemical pretreatment approach em-
ploys alkaline and acid with a heating range of 120–180°C [100]. Whereas physical pres-
sures (solid–liquid shear forces) are utilized in mechanical pretreatment to disturb the 
structure of cellulose by broadening the surface area of organic material in order to depol-
ymerize the hemicellulose that includes the algal cell wall [101]. To evade the enzymatic 
hydrolysis stage, acid and alkaline are used to increase the breakdown of cellulose matrix, 
hemicellulose depolymerization, and starch hydrolysis. By lowering the starch crystallin-
ity and size of starch polymers, this approach causes solvation and saponification pro-
cesses, resulting in the creation of openings in the cell wall that promote the discharge of 
internal constituents [102]. 

 
Figure 3. Different pretreatment methods for high lipid recovery. 

Sert et al. [103] investigated the effects of concentration of the solution, duration of 
pretreatment, and temperature and discovered that 60 min of acid pretreatment (1 N 
H2SO4) at 100°C yielded the highest bioethanol content (18.52%). This amount was three 
times higher than the alkaline pretreatment. The chemical pretreatment, on the other 
hand, is caustic, poisonous, and creates inhibitory chemicals that might bring contamina-
tion downstream [104]. The natural ability of enzymes and some microorganisms to break 
the constituent of the microalgae cell wall is exploited in enzyme-based treatment (biolog-
ical pretreatment) [99]. By boosting the release of intracellular components, hydrolytic en-
zymes are used to hydrolyze the cell wall of microalgae, resulting in a quicker and more 
successful recovery [105]. Hydrolytic bacteria are also used in the pretreatment method; 
the algicidal capacity of these bacteria utilized for microalgae pretreatment is imperative. 
This is because the bacteria’s algicidal molecule causes autolysis in microalgae cells, re-
sulting in the liberation of extracellular components [106]. Bai et al. [107] and Muoz et al. 
[108] stated that the pretreatment of C. vulgaris with Flammeovirga yaeyamensis and Bacillus 
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thuringiensis increased the lipid recovery rate by 44.3% and 100%, respectively. Another 
study found that employing Bacillus licheniformis caused considerable cell wall breakdown 
in Chlorella sp. within 60 h [109]. In this condition, pretreatment with hydrolytic bacteria 
was found to be more successful than enzyme pretreatment, as enzymes drop their capa-
bility to function with time. The pure culture system, which is used to pretreat enzymes 
and bacteria, has several difficulties, including long pretreatment duration, pretreatment 
in open conditions, and the maintenance of pure culture [110]. In addition, to guarantee 
appropriate biomass degradation during the pretreatment process, microbial consortia 
should have cellulose and hemicellulose degradation capacity [111]. The microbial con-
sortium’s synergistic metabolism caught some curiosity; thus, further investigation for bi-
oprocessing technology is still needed. 

8. Conclusions 
Microalgae-based biodiesel is yet to be marketed, the reason being that the total cost 

of processing is twice that of fuels based on petroleum. For the growth of microalgae, 
culture maintenance, biomass production, lipid yield, extraction, and later conversion to 
biodiesel, each step needs high effort and strategy to get cost-effective biodiesel produc-
tion compared to fossil fuels. The current review is focused on the promising metabolic 
engineering innovations that enable enhanced TAG production. The article outlines the 
genetic engineering methodologies, NPs applications, and several pretreatment methods 
that have been explored to increase TAGs synthesis in microalgae species, resulting in an 
economically viable energy production strategy. Where NP’s amendment triggers lipid 
production, on the other hand, pretreatment sustains the high lipid recovery rate. Thus, 
the concept of combining various technologies supporting biomass and lipid enhance-
ment is a viable strategy for biodiesel production from microalgae. 
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