193 research outputs found

    Numerical Solution of Linear Fredholm Integro-Differential Equations by Non-standard Finite Difference Method

    Get PDF
    In this article we consider a non-standard finite difference method for numerical solution of linear Fredholm integro-differential equations. The non-standard finite difference method and the repeated / composite trapezoidal quadrature method are used to transform the Fredholm integro-differential equation into a system of non-linear algebraic equations. The numerical experiments on some linear model problems show the simplicity and efficiency of the proposed method. It is observed from the numerical experiments that our method is convergent and second order accurate

    Solving Nonlinear Two Point Boundary Value Problems Using Exponential Finite Difference Method

    Get PDF
    In this article, we present exponential finite difference scheme for solving nonlinear two point boundary value problems with Dirichlet's boundary conditions . The local truncation error and under appropriate condition we have discussed the convergence of the proposed method. Numerical experiments demonstrate the use and computational efficiency of the method. Numerical results show that this method is at least fourth order accurate, which is good agreement with the theoretically established order of the method

    Cooperative Emission of a Coherent Superflash of Light

    Get PDF
    We investigate the transient coherent transmission of light through an optically thick cold stron-tium gas. We observe a coherent superflash just after an abrupt probe extinction, with peak intensity more than three times the incident one. We show that this coherent superflash is a direct signature of the cooperative forward emission of the atoms. By engineering fast transient phenomena on the incident field, we give a clear and simple picture of the physical mechanisms at play.Comment: 4 Fig., 5 page

    Editorial: Ornamental fishing industry

    Get PDF

    A high flux source of cold strontium atoms

    Full text link
    We describe an experimental apparatus capable of achieving a high loading rate of strontium atoms in a magneto-optical trap operating in a high vacuum environment. A key innovation of this setup is a two dimensional magneto-optical trap deflector located after a Zeeman slower. We find a loading rate of 6x10^9/s whereas the lifetime of the magnetically trapped atoms in the 3P2 state is 54s.Comment: 12 pages, 16 figure

    A neighborhood statistics model for predicting stream pathogen indicator levels

    Get PDF
    Because elevated levels of water-borne Escherichia coli in streams are a leading cause of water quality impairments in the U.S., water-quality managers need tools for predicting aqueous E. coli levels. Presently, E. coli levels may be predicted using complex mechanistic models that have a high degree of unchecked uncertainty or simpler statistical models. To assess spatio-temporal patterns of instream E. coli levels, herein we measured E. coli, a pathogen indicator, at 16 sites (at four different times) within the Squaw Creek watershed, Iowa, and subsequently, the Markov Random Field model was exploited to develop a neighborhood statistics model for predicting instream E. coli levels. Two observed covariates, local water temperature (degrees Celsius) and mean cross-sectional depth (meters), were used as inputs to the model. Predictions of E. coli levels in the water column were compared with independent observational data collected from 16 in-stream locations. The results revealed that spatio-temporal averages of predicted and observed E. coli levels were extremely close. Approximately 66 % of individual predicted E. coli concentrations were within a factor of 2 of the observed values. In only one event, the difference between prediction and observation was beyond one order of magnitude. The mean of all predicted values at 16 locations was approximately 1 % higher than the mean of the observed values. The approach presented here will be useful while assessing instream contaminations such as pathogen/pathogen indicator levels at the watershed scale

    A neighborhood statistics model for predicting stream pathogen indicator levels

    Get PDF
    Because elevated levels of water-borne Escherichia coli in streams are a leading cause of water quality impairments in the U.S., water-quality managers need tools for predicting aqueous E. coli levels. Presently, E. coli levels may be predicted using complex mechanistic models that have a high degree of unchecked uncertainty or simpler statistical models. To assess spatio-temporal patterns of instream E. coli levels, herein we measured E. coli, a pathogen indicator, at 16 sites (at four different times) within the Squaw Creek watershed, Iowa, and subsequently, the Markov Random Field model was exploited to develop a neighborhood statistics model for predicting instream E. coli levels. Two observed covariates, local water temperature (degrees Celsius) and mean cross-sectional depth (meters), were used as inputs to the model. Predictions of E. coli levels in the water column were compared with independent observational data collected from 16 in-stream locations. The results revealed that spatio-temporal averages of predicted and observed E. coli levels were extremely close. Approximately 66 % of individual predicted E. coli concentrations were within a factor of 2 of the observed values. In only one event, the difference between prediction and observation was beyond one order of magnitude. The mean of all predicted values at 16 locations was approximately 1 % higher than the mean of the observed values. The approach presented here will be useful while assessing instream contaminations such as pathogen/pathogen indicator levels at the watershed scale

    Natural Terpenes Prevent Mitochondrial Dysfunction, Oxidative Stress and Release of Apoptotic Proteins during Nimesulide-Hepatotoxicity in Rats

    Get PDF
    Nimesulide, an anti-inflammatory and analgesic drug, is reported to cause severe hepatotoxicity. In this study, molecular mechanisms involved in deranged oxidant-antioxidant homeostasis and mitochondrial dysfunction during nimesulide-induced hepatotoxicity and its attenuation by plant derived terpenes, camphene and geraniol has been explored in male Sprague-Dawley rats. Hepatotoxicity due to nimesulide (80 mg/kg BW) was evident from elevated SGPT, SGOT, bilirubin and histo-pathological changes. Antioxidants and key redox enzymes (iNOS, mtNOS, Cu/Zn-SOD, Mn-SOD, GPx and GR) were altered significantly as assessed by their mRNA expression, Immunoblot analysis and enzyme activities. Redox imbalance along with oxidative stress was evident from decreased NAD(P)H and GSH (56% and 74% respectively; P<0.001), increased superoxide and secondary ROS/RNS generation along with oxidative damage to cellular macromolecules. Nimesulide reduced mitochondrial activity, depolarized mitochondria and caused membrane permeability transition (MPT) followed by release of apoptotic proteins (AIF; apoptosis inducing factor, EndoG; endonuclease G, and Cyto c; cytochrome c). It also significantly activated caspase-9 and caspase-3 and increased oxidative DNA damage (level of 8-Oxoguanine glycosylase; P<0.05). A combination of camphene and geraniol (CG; 1∶1), when pre-administered in rats (10 mg/kg BW), accorded protection against nimesulide hepatotoxicity in vivo, as evident from normalized serum biomarkers and histopathology. mRNA expression and activity of key antioxidant and redox enzymes along with oxidative stress were also normalized due to CG pre-treatment. Downstream effects like decreased mitochondrial swelling, inhibition in release of apoptotic proteins, prevention of mitochondrial depolarization along with reduction in oxidized NAD(P)H and increased mitochondrial electron flow further supported protective action of selected terpenes against nimesulide toxicity. Therefore CG, a combination of natural terpenes prevented nimesulide induced cellular damage and ensuing hepatotoxicity
    corecore