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Abstract:  
 
In this article we consider a non-standard finite difference method for numerical solution of 

linear Fredholm integro-differential equations. The non-standard finite difference method and the 

repeated / composite trapezoidal quadrature method are used to transform the Fredholm integro-

differential equation into a system of non-linear algebraic equations. The numerical experiments 

on some linear model problems show the simplicity and efficiency of the proposed method. It is 

observed from the numerical experiments that our method is convergent and second order 

accurate. 

 

Keywords: Composite Trapezoidal Method, Fredholm Integro-differential equations,  

  Non-Linear Equation, Non-Standard Finite difference, Quadrature formulas 
 

MSC 2010 No.:  45J05, 65L10, 65L12 
 

 

1.  Introduction 
 

Mathematical modeling of real-life problems usually results in some form of functional 

equations, e.g. algebraic equations, differential equations, integral equations and others. The 
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occurrence of differential equations and integral equations is common in many areas of the 

sciences and engineering. However, research work in this field results in a new specific topic, 

where both differential and integral operators appear together in the same equation. These new 

type of equations are known as integro-differential equations. Many mathematical formulations 

in natural science, i.e., study of fluid, biology and chemical kinetics, contain integro-differential 

equations. In particular, the conversion of boundary value problems in differential equations to 

integro-differential equations, with limits of integration, considered as constant, is termed 

Fredholm integro-differential equations. This class of problems has gained importance in the 

literature with a variety of applications. In most cases it is not possible to obtain exact solutions 

of these problems using theoretical / analytical methods. In these cases we need an approximate 

solution of these problems and with development in the computational facilities in the past few 

decades, we have seen substantial progress in the development of approximate solutions of these 

problems. In the literature, there are different approaches and varieties of numerical and 

analytical methods that are used to solve Fredholm integro-differential equations namely 

compact finite difference method Zhao (2006), an extrapolation method Chang (1982), Taylor 

series Yalcinbas (2002), method of regularization Phillips (1962), Tikhonov (1963). In the recent 

past, there are many new methods reported in literature, such as the variational method He 

(2009), Adomian decomposition method Wazwaz (1999)}, variational iterations method Saadati 

et al. (2008), and references therein. 

 

In this article we consider a method for the numerical solution of linear Fredholm integro-

differential equations of the form 

 

            𝑦′(𝑥) = 𝑓(𝑥, 𝑦) + ∫ 𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎

, 𝑎 ≤ 𝑥 ≤ 𝑏 .                                      (1) 

 

subject to the  initial condition 

𝑦(𝑥) = 𝛼 ,                 
 

where 𝛼 is real constant. The functions 𝑓(𝑥, 𝑦) and the kernel 𝐾(𝑥, 𝑡) are known. The solution 

𝑦(𝑥) is to be determined. 

 

The emphasis in this article is on the development of efficient numerical methods as opposed to 

proving theoretical concepts of convergence and existence. Thus, existence and uniqueness of 

the solution to problem (1) is assumed. We further assume that problem (1) is well posed. We 

will not consider the specific assumption on source function to ensure existence and uniqueness 

of the solution to problem (1). It is important to prove theorems on uniqueness, existence, and 

convergence and that can be found in the literature Hu et al. (1987), Hairer et al. (1993). 

 

Over the last few decades, a variety of specialized method Van (1988), Ramos (2007) for the 

numerical solution of initial value problems in ODEs has been reported in the literature. These 

methods generated impressive and accurate numerical results for the model problems considered 

in experiment. Hence, the purpose of this article is to propose a non-standard finite difference 

method similar to Ramos (2007) for numerical solution of problem (1). 
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To the best of our knowledge, no method similar to the proposed method for the numerical 

solution of problem (1) has been discussed in the literature to date. We hope that others may find 

the proposed method appealing, and an improvement to those existing finite difference methods 

for the numerical solution of integro-differential equations. 

 

We present our work in this article as follows. In Section 2, we derive a non-standard finite 

difference method. In Section 3, we discuss local truncation error in the proposed method. We 

present the application of the proposed method for solving problem (1) and explanatory 

numerical results to show the efficiency of the new method in Section 4. Discussion and 

conclusion on the performance of the new method are presented in Section 5. 

 

2.   The Non-Standard Finite Difference Method 
 
We define N finite nodal points of the domain [a, b], in which the solution of problem (1) is 

desired, as 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁−1 < 𝑥𝑁 = 𝑏 using uniform step length h such that 𝑥𝑖 = 𝑎 +
𝑖. ℎ, 𝑖 = 0 (1) 𝑁 . Suppose that we wish to determine the numerical approximation of the 

theoretical solution 𝑦(𝑥) of problem (1) at the nodal points 𝑥𝑖 , 𝑖 = 1,2, … , 𝑁. We denote the 

numerical approximation of 𝑦(𝑥)  at node 𝑥𝑖  as 𝑦𝑖. Let us denote 𝑓𝑖 as the approximation of the 

theoretical value of the source function 𝑓(𝑥, 𝑦(𝑥)) at node 𝑥𝑖 , 𝑖 = 0,1,2, … , 𝑁 . Further, we have 

assumed that 𝑓(𝑥, 𝑡)  is a separable kernel otherwise by using Taylor series expansion for the 

kernel to reduce it to a separable kernel. Thus the integro-differential Equation (1) at node 𝑥𝑖 

may be written as 

 

 𝑦′(𝑥𝑖) = 𝑓(𝑥𝑖, 𝑦𝑖) + ∫ 𝐾(𝑥𝑖 , 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎

.                                            (2) 

 

We approximate the integral that appears in Equation (2) by the repeated / composite trapezoidal 

quadrature method Jain et al. (1987) which yields the following 

 

∫ 𝐾(𝑥𝑖, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎

= ∑{𝐾(𝑥𝑖, 𝑡)𝜆𝑗𝑦(𝑡𝑗) + 𝐸𝑡𝑗}

𝑁

𝑗=0

,                               (3) 

 

where 𝑎 = 𝑡0 < 𝑡1 <  𝑡2 < ⋯ < 𝑡𝑁−1 < 𝑡𝑁 = 𝑏 , j = 0,1,2, . . . , 𝑁   using uniform step length h 

such that 𝑡𝑗 = 𝑎 + 𝑗. ℎ, j = 0,1,2, . . . , 𝑁, 𝐸𝑡𝑗 is the truncation error in 𝑗𝑡ℎ interval and quadrature 

nodes 𝜆𝑗 , j = 0,1,2, . . . . . . , 𝑁 are numerical coefficients such that 

 

𝜆𝑗 = {

1

2
ℎ,              if           𝑗 = 0, 𝑁,                     

ℎ,              otherwise  𝑗 = 1,2, … , 𝑁 − 1,
 

 

do not depend on the function 𝑦(𝑡). The term 𝐸𝑡𝑗 in (3) depends on N and large N reduces 𝐸𝑡𝑗 

considerably. Thus, substituting the value of the integral term in (2) from (3) we have after 

neglecting the error terms, 
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                               𝑦𝑖
′ = 𝑓𝑖 + ∑ 𝐾𝑖,𝑗𝜆𝑗𝑦𝑗

𝑁

𝑗=0

 .                                                                          (4) 

 

Let us define a new source function 𝐺(𝑥, 𝑦) as, 

 

𝐺(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + ∑ 𝐾(𝑥, 𝑡)𝜆𝑗𝑦(𝑡𝑗)

𝑁

𝑗=0

 , 

 

and at each node 𝑥 = 𝑥𝑖 we can write 𝐺(𝑥, 𝑦) as, 

 

                 𝐺(𝑥𝑖, 𝑦𝑖) = 𝑓𝑖 + ∑ 𝐾𝑖,𝑗𝜆𝑗𝑦𝑗

𝑁

𝑗=0

                                                                      (5) 

 

and substitute this so defined source function in (4), we have 

 

                               𝑦𝑖
′ = 𝐺(𝑥𝑖, 𝑦𝑖).                                                                                (6) 

 

Let us assume a local assumption as in Lambert (1991) that  no previous truncation errors have 

been made i.e. 𝑦(𝑥𝑖) = 𝑦𝑖 and following the ideas in Van (1988), Ramos (2007), Pandey (2013), 

we propose a non-standard finite difference method for the approximation of the analytical 

solution 𝑦(𝑥𝑖+1) of the problem (1) at node 𝑥 = 𝑥𝑖+1 as, 

 

𝑦𝑖+1 = 𝑦𝑖 +
2ℎ𝐺𝑖

2

2𝐺𝑖 − ℎ𝐺𝑖
′  ,         𝑖 = 0,1,2, … , 𝑁 − 1,                                          (7) 

 

where 𝐺𝑖
′ =

𝜕𝐺𝑖

𝜕𝑥
 . Thus, we obtain a system of nonlinear equations at each nodal point 𝑥𝑖+1 , 𝑖 =

0,1,2, … , 𝑁 − 1.  
For computational purposes in Section 4, we use the following finite difference approximation in 

place of ℎ𝐺𝑖
′ in (7). 

                        ℎ𝐺𝑖
′ = 𝐺𝑖+1 − 𝐺𝑖 .                                                                                   (8) 

 

Thus, from (8) we can write (7) as, 

 

𝑦𝑖+1 = 𝑦𝑖 +
2ℎ𝐺𝑖

2

𝐺𝑖+1 − 3𝐺𝑖
 ,         𝑖 = 0,1,2, … , 𝑁 − 1,                                   (9) 

 

which is an implicit nonlinear system of equations. Some complexity exists in the system and so 

computation is difficult.  Since we need to solve a nonlinear system with a large number of 

equations, we have to rely on some iterative type method. We apply Newton-Raphson iterative 

method to solve the above system of nonlinear equations. 
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3.    Local Truncation Error 
 

The local truncation error at the node 𝑥 = 𝑥𝑖+1 using exact arithmetic, is 

 

𝑇𝑖+1 = 𝑦(𝑥𝑖 + ℎ) − 𝑦𝑖+1. 
 

At the nodal point 𝑥 = 𝑥𝑖+1 , 𝑖 = 0,1,2, … , 𝑁 − 1, the truncation error 𝑇𝑖+1 in method (7) may be 

written as Jain (1987), 

 

𝑇𝑖+1 = 𝑦𝑖+1 − 𝑦𝑖 −
2ℎ𝐺𝑖

2

2𝐺𝑖 − ℎ𝐺𝑖
′  .           

 

𝑇𝑖+1 = 𝑦𝑖+1 − 𝑦𝑖 − ℎ𝐺𝑖 (1 −
ℎ𝐺𝑖

′

2𝐺𝑖
)

−1

. 

 

Writing the Taylor series expansion for y at nodal point 𝑥 = 𝑥𝑖 and using the binomial expansion 

along with  𝑦𝑖
′′ = 𝐺𝑖

′ and  𝑦𝑖
′ = 𝐺𝑖, we have 

 

𝑇𝑖+1  =
ℎ3

12
(2𝑦𝑖

(3)
− 3

(𝑦𝑖
′′)2

𝑦𝑖
′ ).                                                   (10) 

 

Thus, we obtain a truncation error at each node of 𝑂(ℎ3). 

 

4.  Numerical Experiments 
 

To illustrate our method and demonstrate its computational efficiency, we consider two model 

problems. In each model problem, we took uniform step size h. In Tables 1 and 2, we show the 

maximum absolute error (MAY), computed for different values of N defined as 

 

𝑀𝐴Y = max
1≤ 𝑖 ≤𝑁

|𝑦(𝑥𝑖) − 𝑦𝑖| . 

The order of convergence 𝑂𝑁 of the method (9) is estimated by the formula 

𝑂𝑁 = log𝑚 (
𝑀𝐴𝑌𝑁

𝑀𝐴𝑌𝑚𝑁
) , 

 

where m can be estimated by considering the ratio 𝑁′𝑠. 

 

We use Newton-Raphson iteration method to solve the system of nonlinear equations arising 

from equation (9). All computations are performed on a Windows 2007 Ultimate operating 

system in the GNU FORTRAN environment version 99 compiler (2.95 of gcc) on Intel Core i3-

2330M, 2.20 Ghz PC. The solutions are computed on N nodes and iteration is continued until 

either the maximum difference between two successive iterates is less than 10−10 or the number 

of  iterations reaches 103. 

5

Pandey: Differential Equations by Non-standard Finite Difference Method

Published by Digital Commons @PVAMU, 2015



1024                                                                                                                                                      P. Kumar Pandey       

 

 

 

 

 

Problem 1.   
 

The model linear problem Darania (2007) is given by 

 

𝑦 ′(𝑥) = 1 −
1

3
𝑦(𝑥) + ∫ 𝑥𝑡𝑦(𝑡)𝑑𝑡

1

0

 ,   𝑦(0) = 0,    0 ≤  𝑥 ≤ 1. 

    

The analytical solution is 𝑦(𝑥) = 𝑥. The MAY computed by method (9) for different values of N    

and number of iterations, Iter, are presented in Table 1. 

 

 

       Table 1. Maximum absolute error |𝑦(𝑥𝑖) − 𝑦𝑖|  in   problem 1  

 

 

N 

128 256 512 1024 2048 

MAY .35524368(-4) .76293945(-5) .19073486(-5)  .47683716(-6)  .11920929(-6) 

Iter. 3 2 2 2 2 

 

 

Problem 2.   

 

The model linear problem Darania (2007) is given by 

 

𝑦 ′(𝑥) = 𝑦(𝑥) + 𝑒𝑥 − 𝑥 + ∫ 𝑦(𝑡)𝑑𝑡
1

0

,    𝑦(0) = 0,   0 ≤  𝑥 ≤ 1 . 

The analytical solution is 𝑦(𝑥) = 𝑥𝑒𝑥. The MAY computed by method (9) for different values of 

N and number of iterations, Iter, are presented in Table 2. 
 
 
          Table 2.  Maximum absolute error |𝑦(𝑥𝑖) − 𝑦𝑖|  in   problem 2  

 

 

N 

128 256 512 1024 2048 

MAY .40245056(-3) .10228157(-3) .26464462(-4)  .66757202(-5) .26226044(-5) 

Iter. 11 10 7 6 4 
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5.   Conclusion 

 
 A uniform step size method to determine the numerical solution of Fredholm integro- 

differential equation problems has been developed. This method has been used for transforming 

Fredholm integro-differential equation to a system of nonlinear algebraic equations, i.e. at each 

nodal point 𝑥 = 𝑥𝑖 , 𝑖 = 1,2,3, … , 𝑁, we obtain a system of algebraic equations given by (7) which 

is not easy to solve analytically. The proposed method produced a good approximate numerical 

solution for two model problems with uniform step size. The numerical results of the model 

problems showed that the proposed method is computationally efficient. The rate of convergence 

of the present method is quadratic. The idea presented in this article leads to the possibility to 

develop nonstandard uniform step size difference methods to solve higher order integro-

differential equations. Work in this direction is in progress. 
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