50 research outputs found

    Stray light evaluation for the astrometric gravitation probe mission

    Get PDF
    The main goal of the Astrometric Gravitation Probe mission is the verification of General Relativity and competing gravitation theories by precise astrometric determination of light deflection, and of orbital parameters of selected Solar System objects. The key element is the coherent combination of a set of 92 circular entrance apertures, each feeding an elementary inverted occulter similar to the one developed for Solar Orbiter/METIS.1 This provides coronagraphic functions over a relevant field of view, in which all stars are observed for astrometric purposes with the full resolution of a 1 m diameter telescope. The telescope primary mirror acts as a beam combiner, feeding the 92 pupils, through the internal optics, toward a single focal plane. The primary mirror is characterized by 92 output apertures, sized according to the entrance pupil and telescope geometry, in order to dump the solar disk light beyond the instrument. The astronomical objects are much fainter than the solar disk, which is angularly close to the inner field of view of the telescope. The stray light as generated by the diffraction of the solar disk at the edges of the 92 apertures defines the limiting magnitude of observable stars. In particular, the stray light due to the diffraction from the pupil apertures is scattered by the telescope optics and follows the same optical path of the astronomical objects; it is a contribution that cannot be eliminated and must therefore be carefully evaluated. This paper describes the preliminary evaluation of this stray light contribution

    End-to-end numerical simulator of the Shadow Position Sensor (SPS) metrology subsystem of the PROBA-3 ESA mission

    Get PDF
    PROBA-3 - PRoject for OnBoard Autonomy is an ESA mission to be launched in 2022 where a spacecraſt is used as an external occulter (OSC-Occulter Spacecraſt), to create an artificial solar eclipse as observed by a second spacecraſt, the coronagraph (CSC-Coronagraph Spacecraſt). The two spacecraſts (SCs) will orbit around the Earth, with an highly elliptic orbit (HEO), with the perigee at 600 Km, the apogee at about 60530 Km and an eccentricity of 0.81. The orbital period is of 19.7 hours and the precise formation flight (within 1 mm) will be maintainedforabout6hours overthe apogee, in ordertoguarantee the observation ofthe solarcoronawith the required spatial resolution. The relative alignment ofthe two spacecraſts is obtained bycombining information from several subsystems. One ofthe most accurate subsystem (with accuracy >0.5 mm) is the Shadow Position Sensors (SPS), composed by eight photomultipliers installed around the entrance pupil of the CSC. The SPS will monitor the penumbra generated by the occulter spacecraſt, whose intensity will change according to the relative position ofthe two satellites. A dedicated algorithm has been developed to retrieve the displacementof the spacecraſts fromthe measurements ofthe SPS. Several tests are requiredin ordertoevaluate the robustness of the algorithm and its performances/results for different possible configurations. A soſtware simulator has been developed for this purpose. The simulator includes the possibility to generate synthetic 2-D penumbra profile maps or analyze measured profiles and run different versions ofthe retrieving algorithms, including the “on-board” version. In order to import the “as built” algorithms, the soſtware is coded using Matlab

    EChO payload electronics architecture and SW design

    Get PDF
    EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer, covering the wavelength range from 0.55 μ m to 11.0 μ m. The baseline design includes the goal wavelength extension to 0.4 μ m while an optional LWIR module extends the range to the goal wavelength of 16.0 μ m. An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem interfacing the spacecraft and collecting data from all the payload spectrometers modules. ICU is in charge of two main tasks: the overall payload control ( Instrument Control Function) and the housekeepings and scientific data digital processing ( Data Processing Function), including the lossless compression prior to store the science data to the Solid State Mass Memory of the Spacecraft. These two main tasks are accomplished thanks to the Payload On Board Software (P-OBSW) running on the ICU CPUs. <P /

    The instrument control unit of the ESA-PLATO 2.0 mission

    Get PDF
    PLATO 2.0 has been selected by ESA as the third medium-class Mission (M3) of the Cosmic Vision Program. Its Payload is conceived for the discovery of new transiting exoplanets on the disk of their parent stars and for the study of planetary system formation and evolution as well as to answer fundamental questions concerning the existence of other planetary systems like our own, including the presence of potentially habitable new worlds. The PLATO Payload design is based on the adoption of four sets of short focal length telescopes having a large field of view in order to exploit a large sky coverage and to reach, at the same time, the needed photometry accuracy and signalto- noise ratio (S/N) within a few tens of seconds of exposure time. The large amount of data produced by the telescope is collected and processed by means of the Payload's Data Processing System (DPS) composed by many processing electronics units. This paper gives an overview of the PLATO 2.0 DPS, mainly focusing on the architecture and processing capabilities of its Instrument Control Unit (ICU), the electronic subsystem acting as the main interface between the Payload (P/L) and the Spacecraft (S/C)

    A virtual appliance as proxy pipeline for the Solar Orbiter/Metis coronagraph

    Get PDF
    Metis is the coronagraph on board Solar Orbiter, the ESA mission devoted to the study of the Sun that will be launched in October 2018. Metis is designed to perform imaging of the solar corona in the UV at 121.6 nm and in the visible range where it will accomplish polarimetry studies thanks to a variable retarder plate. Due to mission constraints, the telemetry downlink on the spacecraft will be limited and data will be downloaded with delays that could reach, in the worst case, several months. In order to have a quick overview on the ongoing operations and to check the safety of the 10 instruments on board, a high-priority downlink channel has been foreseen to download a restricted amount of data. These so-called Low Latency Data will be downloaded daily and, since they could trigger possible actions, they have to be quickly processed on ground as soon as they are delivered. To do so, a proper processing pipeline has to be developed by each instrument. This tool will then be integrated in a single system at the ESA Science Operation Center that will receive the downloaded data by the Mission Operation Center. This paper will provide a brief overview of the on board processing and data produced by Metis and it will describe the proxy-pipeline currently under development to deal with the Metis low-latency data
    corecore