6 research outputs found

    Synthesis of substituted azetidines and spirocyclic diazetidines

    Get PDF
    Chapter 1 begins with an introduction to azetidines, including a discussion of the methodologies for their synthesis, their applications, relevance in natural products and as building blocks in medicinal chemistry. It then describes the development of a new asymmetric route to 2-substituted azetidin-3-ones using Enders’ SAMP/RAMP auxiliary. A one-pot process was developed involving the metalation of SAMP hydrazones of N-Boc-azetidin-3-one, alkylation and subsequent in situ hydrolysis to give the substituted products. Various bases and reaction conditions were explored to find optimal conditions for maximal yield and enantioselectivity. A representative range of electrophiles were screened including alkyl, allyl and benzyl halides and carbonyl compounds, producing enantioselectivities of up to 85% ee. Multiple substitution on the azetidin-3-one ring was briefly explored by repetition of the alkylation/hydrolysis sequence. Derivitisation by way of Pictet-Spengler reactions was used to confirm the absolute configuration at the newly created stereocentre. Chapter 2 begins with an introduction to 1,2-diazetidines outlining methods for their synthesis, before introducing the relevance of these nitrogen spirocycles. This chapter then describes two routes for the synthesis of these novel spirocyclic 1,2- diazetidines by (i) formation of the diazetidine ring and (ii) functionalisation of a range of 3-methylene-1,2-diazetidines including differentially protected variants. The diazetidines were subjected to dichloro- and difluorocyclopropanation with the latter achieved in high yields. Additionally, reactions with tetracyanoethylene by way of highly asynchronous [2π+2π] cycloadditions proceeded in near quantitative yield. In this way, a range of novel 4,5-diazaspiro[2.3]hexane and 1,2- diazaspiro[3.3]heptane spirocycles were produced. Chapter 3 details the experimental procedure and characterisation for all the novel compounds synthesised

    Synthesis of 4,5-diazaspiro[2.3]hexanes and 1,2-diazaspiro[3.3]heptanes as hexahydropyridazine analogues

    Get PDF
    4,5-Diazaspiro[2.3]hexanes are made by dihalocarbene addition across the exocyclic double bond of readily accessible 3-alkylidene-1,2-diazetidines. Using difluorocarbene, generated from TMSCF3/NaI, these spirocycles were produced in yields up to 97% by stereospecific addition across the alkene. Lower yields (up to 64%) were observed using more reactive dichlorocarbene, due to competitive insertion of the carbene into the N–N bond. Larger 1,2-diazaspiro[3.3]heptanes are produced by [2+2] cycloaddition of 3-alkylidene-1,2-diazetidines with tetracyanoethylene (TCNE) in up to 99% yield. These additions work with di-, tri- and tetrasubstituted alkenes, offering a practical route to rigidified analogues of the medicinally important hexahydropyridazines

    Palladium-Catalyzed Multicomponent Synthesis of 2‑Aryl-2-imidazolines from Aryl Halides and Diamines

    No full text
    An efficient palladium-catalyzed three-component reaction that combines aryl halides, isocyanides, and diamines provides access to 2-aryl-2-imidazolines in yields up to 96%. Through variation of the diamine component, the reaction can be extended to the synthesis of 2-aryl-1<i>H</i>-benzimidazoles and 2-aryl-1,4,5,6-tetrahydropyrimidines

    Palladium-Catalyzed Multicomponent Synthesis of 2‑Aryl-2-imidazolines from Aryl Halides and Diamines

    No full text
    An efficient palladium-catalyzed three-component reaction that combines aryl halides, isocyanides, and diamines provides access to 2-aryl-2-imidazolines in yields up to 96%. Through variation of the diamine component, the reaction can be extended to the synthesis of 2-aryl-1<i>H</i>-benzimidazoles and 2-aryl-1,4,5,6-tetrahydropyrimidines

    Palladium-catalyzed multicomponent synthesis of 2-aryl-2-imidazolines from aryl halides and diamines

    No full text
    An efficient palladium-catalyzed three-component reaction that combines aryl halides, isocyanides, and diamines provides access to 2-aryl-2-imidazolines in yields up to 96%. Through variation of the diamine component, the reaction can be extended to the synthesis of 2-aryl-1H-benzimidazoles and 2-aryl-1,4,5,6-tetrahydropyrimidines
    corecore