16 research outputs found

    Laser action in run-away electron preionized diffuse discharges

    Get PDF
    Formation features of run-away electron preionized diffuse discharge (REP DD) and REP DD properties in different experimental conditions are studied. It was shown that sufficient uniformity of REP DD allows its application as an excitation source of lasers on different gas mixtures at elevated pressure. Promising results of REP DD application for development of gas lasers are shown. Stimulated radiation in the IR, visible and UV spectral ranges was obtained in the diffuse discharge. Ultimate efficiency of non-chain HF(DF) chemical and nitrogen lasers on mixtures of SF6 with H2(D2) and N2 was achieved. New operation mode of nitrogen laser is demonstrated under REP DD excitation. Kinetic model of the REP DD in mixtures of nitrogen with SF6 is developed allowing to predict the radiation parameters of nitrogen laser at Ξ» = 337,1 nm. Long-pulse operation of rare gas halide lasers was achieved. Β© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Efficient gas lasers pumped by run-away electron preionized diffuse discharge

    Get PDF
    It was shown that run-away electron preionized volume (diffuse) discharge (REP DD) can be used as an excitation source of active gas mixtures at elevated pressures and can produce laser emission. We report experimental and calculated results of application of the REP DD for excitation of different active gas mixtures. It was shown that the REP DD allows to obtain efficient lasing stimulated radiation in the IR, visible and UV spectral ranges. Kinetic model of the REP DD in mixtures of nitrogen with SF6 is developed allowing to predict the radiation parameters of nitrogen laser at 337.1 nm. Promising prospects of REP DD employment for exciting a series of gas lasers was demonstrated. Lasing was obtained on molecules N2, HF, and DF with the efficiency close to the limiting value. It was established that the REP DD is most efficient for pumping lasers with the mixtures comprising electro-negative gases. Β© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Efficient N2laser pumped by nanosecond diffuse discharge

    No full text
    Laser action on C3Ξ u β†’ B3 Ξ  g transition of nitrogen pumped by a runaway electron preionized discharge (REP DD) was investigated. Emission parameters of diffuse discharge formed by runaway electrons in gaps between long blade electrodes are studied. It was shown that sufficient uniformity of REP DD allows its application as an efficient pumping source of gas lasers. Model of nitrogen laser on N2 – SF6 mixture pumped by nanosecond diffuse discharge was developed. Results of calculations were close to experimental ones and predicted two laser operation modes. In mixture of SF6 – N2 electrical efficiency of 0.2% was obtained. Ultimate laser efficiency of 0.23% was achieved in triple mixtures He–N 2 – SF6. Lasing on N2 molecules with 2 or 3 peaks in successive discharge current oscillations was obtained for the first time in N2 – SF6 – (He) mixture. It was shown that addition of helium to the mixture allows to change energy and spectral distribution on separate laser peaks. Promising prospects of REP DD employment for pumping nitrogen gas lasers was demonstrated which suggest that diffuse discharge can be efficient for pumping a wide range of gas lasers operating on gas mixtures with electro-negative gases, for example, excimer and non-chain chemical lasers

    Gas lasers pumped by runaway electrons preionized diffuse discharge

    No full text
    It was shown that run-away electron preionized volume (diffuse) discharge (REP DD) can be used as an excitation source of gas mixtures at elevated pressures and can produce laser emission. We report experimental and simulated results of application of the REP DD for excitation of different active gas mixtures. Kinetic model of the REP DD in mixtures of nitrogen with SF6 is developed allowing predicting the radiation parameters of nitrogen laser at 337.1 nm. Peculiarities of the REP DD development in different gas mixtures are studied, as well. It was shown that the REP DD allows obtaining efficient lasing stimulated radiation in the IR, visible and UV spectral ranges. New operation mode of nitrogen laser is demonstrated under REP DD excitation. Laser action on N2, HF, and DF molecules was obtained with the efficiency close to the limiting value. Promising prospects of REP DD employment for exciting a series of gas lasers was demonstrated. It was established that the REP DD is most efficient for pumping lasers with the mixtures comprising electro-negative gases

    Laser action in run-away electron preionized diffuse discharges

    No full text
    Formation features of run-away electron preionized diffuse discharge (REP DD) and REP DD properties in different experimental conditions are studied. It was shown that sufficient uniformity of REP DD allows its application as an excitation source of lasers on different gas mixtures at elevated pressure. Promising results of REP DD application for development of gas lasers are shown. Stimulated radiation in the IR, visible and UV spectral ranges was obtained in the diffuse discharge. Ultimate efficiency of non-chain HF(DF) chemical and nitrogen lasers on mixtures of SF6 with H2(D2) and N2 was achieved. New operation mode of nitrogen laser is demonstrated under REP DD excitation. Kinetic model of the REP DD in mixtures of nitrogen with SF6 is developed allowing to predict the radiation parameters of nitrogen laser at Ξ» = 337,1 nm. Long-pulse operation of rare gas halide lasers was achieved. Β© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
    corecore