85 research outputs found

    A New Approach to Transport Coefficients in the Quantum Spin Hall Effect

    Get PDF
    We investigate some foundational issues in the quantum theory of spin transport, in the general case when the unperturbed Hamiltonian operator H does not commute with the spin operator in view of Rashba interactions, as in the typical models for the quantum spin Hall effect. A gapped periodic one-particle Hamiltonian H is perturbed by adding a constant electric field of intensity ε≪ 1 in the j-th direction, and the linear response in terms of a S-current in the i-th direction is computed, where S is a generalized spin operator. We derive a general formula for the spin conductivity that covers both the choice of the conventional and of the proper spin current operator. We investigate the independence of the spin conductivity from the choice of the fundamental cell (unit cell consistency), and we isolate a subclass of discrete periodic models where the conventional and the proper S-conductivity agree, thus showing that the controversy about the choice of the spin current operator is immaterial as far as models in this class are concerned. As a consequence of the general theory, we obtain that whenever the spin is (almost) conserved, the spin conductivity is (approximately) equal to the spin-Chern number. The method relies on the characterization of a non-equilibrium almost-stationary state (NEASS), which well approximates the physical state of the system (in the sense of space-adiabatic perturbation theory) and allows moreover to compute the response of the adiabatic S-current as the trace per unit volume of the S-current operator times the NEASS. This technique can be applied in a general framework, which includes both discrete and continuum models

    Bloch bundles, Marzari-Vanderbilt functional and maximally localized Wannier functions

    Full text link
    We consider a periodic Schroedinger operator and the composite Wannier functions corresponding to a relevant family of its Bloch bands, separated by a gap from the rest of the spectrum. We study the associated localization functional introduced by Marzari and Vanderbilt, and we prove some results about the existence and exponential localization of its minimizers, in dimension d < 4. The proof exploits ideas and methods from the theory of harmonic maps between Riemannian manifolds.Comment: 37 pages, no figures. V2: the appendix has been completely rewritten. V3: final version, to appear in Commun. Math. Physic

    On the exit statistics theorem of many particle quantum scattering

    Full text link
    We review the foundations of the scattering formalism for one particle potential scattering and discuss the generalization to the simplest case of many non interacting particles. We point out that the "straight path motion" of the particles, which is achieved in the scattering regime, is at the heart of the crossing statistics of surfaces, which should be thought of as detector surfaces. We sketch a proof of the relevant version of the many particle flux across surfaces theorem and discuss what needs to be proven for the foundations of scattering theory in this context.Comment: 15 pages, 4 figures; to appear in the proceedings of the conference "Multiscale methods in Quantum Mechanics", Accademia dei Lincei, Rome, December 16-20, 200

    Infrared problem for the Nelson model on static space-times

    Full text link
    We consider the Nelson model with variable coefficients and investigate the problem of existence of a ground state and the removal of the ultraviolet cutoff. Nelson models with variable coefficients arise when one replaces in the usual Nelson model the flat Minkowski metric by a static metric, allowing also the boson mass to depend on position. A physical example is obtained by quantizing the Klein-Gordon equation on a static space-time coupled with a non-relativistic particle. We investigate the existence of a ground state of the Hamiltonian in the presence of the infrared problem, i.e. assuming that the boson mass tends to 0 at infinity

    Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential

    Full text link
    Coupled-mode systems are used in physical literature to simplify the nonlinear Maxwell and Gross-Pitaevskii equations with a small periodic potential and to approximate localized solutions called gap solitons by analytical expressions involving hyperbolic functions. We justify the use of the one-dimensional stationary coupled-mode system for a relevant elliptic problem by employing the method of Lyapunov--Schmidt reductions in Fourier space. In particular, existence of periodic/anti-periodic and decaying solutions is proved and the error terms are controlled in suitable norms. The use of multi-dimensional stationary coupled-mode systems is justified for analysis of bifurcations of periodic/anti-periodic solutions in a small multi-dimensional periodic potential.Comment: 18 pages, no figure

    Adiabatically coupled systems and fractional monodromy

    Get PDF
    We present a 1-parameter family of systems with fractional monodromy and adiabatic separation of motion. We relate the presence of monodromy to a redistribution of states both in the quantum and semi-quantum spectrum. We show how the fractional monodromy arises from the non diagonal action of the dynamical symmetry of the system and manifests itself as a generic property of an important subclass of adiabatically coupled systems

    Effective dynamics for particles coupled to a quantized scalar field

    Full text link
    We consider a system of N non-relativistic spinless quantum particles (``electrons'') interacting with a quantized scalar Bose field (whose excitations we call ``photons''). We examine the case when the velocity v of the electrons is small with respect to the one of the photons, denoted by c (v/c= epsilon << 1). We show that dressed particle states exist (particles surrounded by ``virtual photons''), which, up to terms of order (v/c)^3, follow Hamiltonian dynamics. The effective N-particle Hamiltonian contains the kinetic energies of the particles and Coulomb-like pair potentials at order (v/c)^0 and the velocity dependent Darwin interaction and a mass renormalization at order (v/c)^{2}. Beyond that order the effective dynamics are expected to be dissipative. The main mathematical tool we use is adiabatic perturbation theory. However, in the present case there is no eigenvalue which is separated by a gap from the rest of the spectrum, but its role is taken by the bottom of the absolutely continuous spectrum, which is not an eigenvalue. Nevertheless we construct approximate dressed electrons subspaces, which are adiabatically invariant for the dynamics up to order (v/c)\sqrt{\ln (v/c)^{-1}}. We also give an explicit expression for the non adiabatic transitions corresponding to emission of free photons. For the radiated energy we obtain the quantum analogue of the Larmor formula of classical electrodynamics.Comment: 67 pages, 2 figures, version accepted for publication in Communications in Mathematical Physic

    Semiclassical approximations for Hamiltonians with operator-valued symbols

    Full text link
    We consider the semiclassical limit of quantum systems with a Hamiltonian given by the Weyl quantization of an operator valued symbol. Systems composed of slow and fast degrees of freedom are of this form. Typically a small dimensionless parameter ε≪1\varepsilon\ll 1 controls the separation of time scales and the limit ε→0\varepsilon\to 0 corresponds to an adiabatic limit, in which the slow and fast degrees of freedom decouple. At the same time ε→0\varepsilon\to 0 is the semiclassical limit for the slow degrees of freedom. In this paper we show that the ε\varepsilon-dependent classical flow for the slow degrees of freedom first discovered by Littlejohn and Flynn, coming from an \epsi-dependent classical Hamilton function and an ε\varepsilon-dependent symplectic form, has a concrete mathematical and physical meaning: Based on this flow we prove a formula for equilibrium expectations, an Egorov theorem and transport of Wigner functions, thereby approximating properties of the quantum system up to errors of order ε2\varepsilon^2. In the context of Bloch electrons formal use of this classical system has triggered considerable progress in solid state physics. Hence we discuss in some detail the application of the general results to the Hofstadter model, which describes a two-dimensional gas of non-interacting electrons in a constant magnetic field in the tight-binding approximation.Comment: Final version to appear in Commun. Math. Phys. Results have been strengthened with only minor changes to the proofs. A section on the Hofstadter model as an application of the general theory was added and the previous section on other applications was remove

    Semi- and Non-relativistic Limit of the Dirac Dynamics with External Fields

    Full text link
    We show how to approximate Dirac dynamics for electronic initial states by semi- and non-relativistic dynamics. To leading order, these are generated by the semi- and non-relativistic Pauli hamiltonian where the kinetic energy is related to m2+ξ2\sqrt{m^2 + \xi^2} and ξ2/2m\xi^2 / 2m, respectively. Higher-order corrections can in principle be computed to any order in the small parameter v/c which is the ratio of typical speeds to the speed of light. Our results imply the dynamics for electronic and positronic states decouple to any order in v/c << 1. To decide whether to get semi- or non-relativistic effective dynamics, one needs to choose a scaling for the kinetic momentum operator. Then the effective dynamics are derived using space-adiabatic perturbation theory by Panati et. al with the novel input of a magnetic pseudodifferential calculus adapted to either the semi- or non-relativistic scaling.Comment: 42 page

    Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas

    Full text link
    We consider Novikov problem of the classification of level curves of quasiperiodic functions on the plane and its connection with the conductivity of two-dimensional electron gas in the presence of both orthogonal magnetic field and the superlattice potentials of special type. We show that the modulation techniques used in the recent papers on the 2D heterostructures permit to obtain the general quasiperiodic potentials for 2D electron gas and consider the asymptotic limit of conductivity when τ→∞\tau \to \infty. Using the theory of quasiperiodic functions we introduce here the topological characteristics of such potentials observable in the conductivity. The corresponding characteristics are the direct analog of the "topological numbers" introduced previously in the conductivity of normal metals.Comment: Revtex, 16 pages, 12 figure
    • …
    corecore