637 research outputs found

    Ultracold quantum gases in triangular optical lattices

    Full text link
    Over the last years the exciting developments in the field of ultracold atoms confined in optical lattices have led to numerous theoretical proposals devoted to the quantum simulation of problems e.g. known from condensed matter physics. Many of those ideas demand for experimental environments with non-cubic lattice geometries. In this paper we report on the implementation of a versatile three-beam lattice allowing for the generation of triangular as well as hexagonal optical lattices. As an important step the superfluid-Mott insulator (SF-MI) quantum phase transition has been observed and investigated in detail in this lattice geometry for the first time. In addition to this we study the physics of spinor Bose-Einstein condensates (BEC) in the presence of the triangular optical lattice potential, especially spin changing dynamics across the SF-MI transition. Our results suggest that below the SF-MI phase transition, a well-established mean-field model describes the observed data when renormalizing the spin-dependent interaction. Interestingly this opens new perspectives for a lattice driven tuning of a spin dynamics resonance occurring through the interplay of quadratic Zeeman effect and spin-dependent interaction. We finally discuss further lattice configurations which can be realized with our setup.Comment: 19 pages, 7 figure

    Quantum simulation of frustrated magnetism in triangular optical lattices

    Full text link
    Magnetism plays a key role in modern technology as essential building block of many devices used in daily life. Rich future prospects connected to spintronics, next generation storage devices or superconductivity make it a highly dynamical field of research. Despite those ongoing efforts, the many-body dynamics of complex magnetism is far from being well understood on a fundamental level. Especially the study of geometrically frustrated configurations is challenging both theoretically and experimentally. Here we present the first realization of a large scale quantum simulator for magnetism including frustration. We use the motional degrees of freedom of atoms to comprehensively simulate a magnetic system in a triangular lattice. Via a specific modulation of the optical lattice, we can tune the couplings in different directions independently, even from ferromagnetic to antiferromagnetic. A major advantage of our approach is that standard Bose-Einstein-condensate temperatures are sufficient to observe magnetic phenomena like N\'eel order and spin frustration. We are able to study a very rich phase diagram and even to observe spontaneous symmetry breaking caused by frustration. In addition, the quantum states realized in our spin simulator are yet unobserved superfluid phases with non-trivial long-range order and staggered circulating plaquette currents, which break time reversal symmetry. These findings open the route towards highly debated phases like spin-liquids and the study of the dynamics of quantum phase transitions.Comment: 5 pages, 4 figure

    SURVEY THE MUTATION OF FGB (BETA FIBRINOGEN) AND FV (FACTOR V LEIDEN), FACTOR XIII AND FACTOR II (PROTHROMBIN), IN PATIENTS WITH RECURRENT ABORTIONS ALONG WITH NORMAL KARYOTYPE

    Get PDF
    Some pregnancies are abnormal in human genetically and end with the spontaneous abortion, which is the most common problem of pregnancy. The recurrent abortions are often referred to as multifactorial disease that one of which is thrombosis. The thrombosis in placenta capillaries seems to disturb the blood circulation between the mother and the fetus and eventually lead to abortion. Recently, studies have shown that genetic basis for thrombophilia relates with recurrent abortion. The aim of this study is the survey of G1691A and G4070A mutations in the Factor V gene, -455G>A mutation in the gen of XIII factor, G103T mutation in Beta fibrinogen and A20210G mutation in the thrombin gene. The samples were collected from 60 patients referred to Tehran Imam Khomeini hospital .DNA was extracted from patients' blood samples by multiple PCR simultaneously containing different mutations were duplicated then the existence of mutation was evaluated by the strip technique. The genes mutation of G1691A in Factor V, G4070A in Factor V, G103T in Beta fibrinogen, -455G>A in the XIII factor and G20210A were identified 6.6, 45, 36, 40 and 3.3 respectively. Studies on the other population showed that frequency of examined mutations varies with other communities. Anyway, more samples are required in order to obtain more accurate statistics related to the frequency of mutations

    Application of visual surveys to estimate acorn production of Brant`s oak (Quercus brantii Lindl.) in northern Zagros Forests of Iran

    Get PDF
    Acorn production plays a fundamental role in the organization and dynamics of oak forest ecosystems. Regarding acorn importance, visual survey methods have been used to estimate acorn production of oak species throughout the world. In this study, the mast indices of Brant`s oak (Quercus brantii Lindl.) were determined in a section of northern Zagros forests, almost 36 ha area, near Baneh, Kurdistan province. Different types of visual surveys (Whitehead, Christisen-Kearby, Modified Graves and Koenig) were used on 120 trees which were selected using stratified random sampling method. In early September, just prior to acorn fall, each tree was investigated using visual surveys. Furthermore, for each tree, acorn density (acorns number/m2 crown area) was calculated using crown counting to calculate the best regression model in Koenig method. Based on visual estimation indices, fair acorn production of Q. brantii was observed. There was a strong (R2 = 0.73), highly significant (P < 0.001) linear relationship between the Koenig acorn counts (X) and corresponding crown counts. Furthermore, the results of this research confirmed usefulness of the quick visual survey methods to estimate the acorn crop of Q. brantii

    Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices

    Full text link
    Orbital physics plays a significant role for a vast number of important phenomena in complex condensed matter systems such as high-Tc_c superconductivity and unconventional magnetism. In contrast, phenomena in superfluids -- especially in ultracold quantum gases -- are commonly well described by the lowest orbital and a real order parameter. Here, we report on the observation of a novel multi-orbital superfluid phase with a {\it complex} order parameter in binary spin mixtures. In this unconventional superfluid, the local phase angle of the complex order parameter is continuously twisted between neighboring lattice sites. The nature of this twisted superfluid quantum phase is an interaction-induced admixture of the p-orbital favored by the graphene-like band structure of the hexagonal optical lattice used in the experiment. We observe a second-order quantum phase transition between the normal superfluid (NSF) and the twisted superfluid phase (TSF) which is accompanied by a symmetry breaking in momentum space. The experimental results are consistent with calculated phase diagrams and reveal fundamentally new aspects of orbital superfluidity in quantum gas mixtures. Our studies might bridge the gap between conventional superfluidity and complex phenomena of orbital physics.Comment: 5 pages, 4 figure

    Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice

    Full text link
    Dirac points lie at the heart of many fascinating phenomena in condensed matter physics, from massless electrons in graphene to the emergence of conducting edge states in topological insulators [1, 2]. At a Dirac point, two energy bands intersect linearly and the particles behave as relativistic Dirac fermions. In solids, the rigid structure of the material sets the mass and velocity of the particles, as well as their interactions. A different, highly flexible approach is to create model systems using fermionic atoms trapped in the periodic potential of interfering laser beams, a method which so far has only been applied to explore simple lattice structures [3, 4]. Here we report on the creation of Dirac points with adjustable properties in a tunable honeycomb optical lattice. Using momentum-resolved interband transitions, we observe a minimum band gap inside the Brillouin zone at the position of the Dirac points. We exploit the unique tunability of our lattice potential to adjust the effective mass of the Dirac fermions by breaking inversion symmetry. Moreover, changing the lattice anisotropy allows us to move the position of the Dirac points inside the Brillouin zone. When increasing the anisotropy beyond a critical limit, the two Dirac points merge and annihilate each other - a situation which has recently attracted considerable theoretical interest [5-9], but seems extremely challenging to observe in solids [10]. We map out this topological transition in lattice parameter space and find excellent agreement with ab initio calculations. Our results not only pave the way to model materials where the topology of the band structure plays a crucial role, but also provide an avenue to explore many-body phases resulting from the interplay of complex lattice geometries with interactions [11, 12]

    Topological orbital ladders

    Full text link
    We unveil a topological phase of interacting fermions on a two-leg ladder of unequal parity orbitals, derived from the experimentally realized double-well lattices by dimension reduction. Z2Z_2 topological invariant originates simply from the staggered phases of spsp-orbital quantum tunneling, requiring none of the previously known mechanisms such as spin-orbit coupling or artificial gauge field. Another unique feature is that upon crossing over to two dimensions with coupled ladders, the edge modes from each ladder form a parity-protected flat band at zero energy, opening the route to strongly correlated states controlled by interactions. Experimental signatures are found in density correlations and phase transitions to trivial band and Mott insulators.Comment: 12 pages, 5 figures, Revised title, abstract, and the discussion on Majorana numbe

    Effects of berberine on β-secretase activity in a rabbit model of Alzheimer's disease

    Get PDF
    Introduction: Relevant aspects of Alzheimer's disease (AD) can be modeled by aluminium-maltolate injection into specific regions of the brain. The possible role of berberine chloride (BC) as an anti-inflammatory agent in the brain has been previously addressed. Material and methods: Rabbits were divided into control (C), untreated lesion (L) and BC-treated + lesion (L + BC) groups. Animals in L + BC received BC (50 mg/ kg) orally 1 day after surgery and daily for 2 weeks. The lesion was induced by injection of 100 μu of either vehicle or water containing 25 mM aluminium-maltol into intraventricular fissure. Weight loss, ataxia, paralysis and tremor were monitored. For histopathology, Bielschowsky silver and H&E staining were employed. β-Secretase activity in hippocampus was finally assessed. Results: All L animals died on days 12-15 after lesion. Seven to 10 days after lesion, abnormal symptoms as well as cachexia were seen in over 90 of cases. L rabbits lost an average of 0.5 kg which was significant on days 10 and 12 (p < 0.05); this was not completely prevented by BC. Up to day 15, all L animals had lost their lives (p < 0.001). BC treatment protected the hippocampus from degeneration, altered the behavior and decreased the activity of β-site amyloid precursor protein cleaving enzyme-1 (BACE-1). Conclusions: Considering the findings in regard to physiological abilities, histological changes and BACE-1 activity in hippocampus changes, it is concluded that BC treatment could be an effective therapy in restoring Al maltol-induced behavioral derangements in the rabbit model of AD. © 2013 Termedia & Banach

    Pattern Functional Dependencies for Data Cleaning

    Get PDF
    Patterns (or regex-based expressions) are widely used to constrain the format of a domain (or a column), e.g., a Year column should contain only four digits, and thus a value like "1980-" might be a typo. Moreover, integrity constraints (ICs) defined over multiple columns, such as (conditional) functional dependencies and denial constraints, e.g., a ZIP code uniquely determines a city in the UK, have been widely used in data cleaning. However, a promising, but not yet explored, direction is to combine regex- and IC-based theories to capture data dependencies involving partial attribute values. For example, in an employee ID such as"F-9-107", "F" is sufficient to determine the finance department. Inspired by the above observation, we propose a novel class of ICs, called pattern functional dependencies (PFDs), to model fine-grained data dependencies gleaned from partial attribute values. These dependencies cannot be modeled using traditional ICs, such as (conditional) functional dependencies, which work on entire attribute values. We also present a set of axioms for the inference of PFDs, analogous to Armstrong's axioms for FDs, and study the complexity of consistency and implication analysis of PFDs. Moreover, we devise an effective algorithm to automatically discover PFDs even in the presence of errors in the data. Our extensive experiments on 15 real-world datasets show that our approach can effectively discover valid and useful PFDs over dirty data, which can then be used to detect data errors that are hard to capture by other types of ICs
    corecore