681 research outputs found
Effects of doping on thermally excited quasiparticles in the high- superconducting state
The physical properties of low energy superconducting quasiparticles in high-
superconductors are examined using magnetic penetration depth and
specific heat experimental data. We find that the low energy density of states
of quasiparticles of LaSrCuO scales with to the
leading order approximation, where is the critical doping concentration
below which . The linear temperature term of the superfluid density is
renormalized by quasiparticle interactions and the renormalization factor times
the Fermi velocity is found to be doping independent.Comment: 3 pages, 3 figures, minor change to the content, fig1 is reploted, to
appear in Phys Rev
Systematic behaviour of the in-plane penetration depth in d-wave cuprates
We report the temperature T and oxygen concentration dependences of the
penetration depth of grain-aligned YBa_2Cu_3O_{7-\delta} with \delta= 0.0, 0.3
and 0.43. The values of the in-plane \lambda_{ab}(0) and out-of-plane
\lambda_{c}(0) penetration depths, the low temperature linear term in
\lambda_{ab}(T), and the ratio \lambda_{c}(0) /\lambda_{ab}(T) were found to
increase with increasing . The systematic changes of the linear term in
\lambda_{ab}(T) with T_c found here and in recent work on HgBa_2Ca_{n-1}
Cu_nO_{2n+2+\delta} (n = 1 and 3) are discussed.Comment: 4 pages, 4 figure
Metallic characteristics in superlattices composed of insulators, NdMnO3/SrMnO3/LaMnO3
We report on the electronic properties of superlattices composed of three
different antiferromagnetic insulators, NdMnO3/SrMnO3/LaMnO3 grown on SrTiO3
substrates. Photoemission spectra obtained by tuning the x-ray energy at the Mn
2p -> 3d edge show a Fermi cut-off, indicating metallic behavior mainly
originating from Mn e_g electrons. Furthermore, the density of states near the
Fermi energy and the magnetization obey a similar temperature dependence,
suggesting a correlation between the spin and charge degrees of freedom at the
interfaces of these oxides
Penetration Depth Measurements in MgB_2: Evidence for Unconventional Superconductivity
We have measured the magnetic penetration depth of the recently discovered
binary superconductor MgB_2 using muon spin rotation and low field
-susceptibility. From the damping of the muon precession signal we find the
penetration depth at zero temperature is about 85nm. The low temperature
penetration depth shows a quadratic temperature dependence, indicating the
presence of nodes in the superconducting energy gap.Comment: 4 pages 3 figure
Flux pinning and phase separation in oxygen rich La2-xSrxCuO4+y system
We have studied the magnetic characteristics of a series of super-oxygenated
La2-xSrxCuO4+y samples. As shown in previous work, these samples spontaneously
phase separate into an oxygen rich superconducting phase with a TC near 40 K
and an oxygen poor magnetic phase that also orders near 40 K. All samples
studied are highly magnetically reversible even to low temperatures. Although
the internal magnetic regions of these samples might be expected to act as
pinning sites, our present study shows that they do not favor flux pinning.
Flux pinning requires a matching condition between the defect and the
superconducting coherence length. Thus, our results imply that the magnetic
regions are too large to act as pinning centers. This also implies that the
much greater flux pinning in typical La2-xSrxCuO4 materials is the result of
nanoscale inhomogeneities that grow to become the large magnetic regions in the
super-oxygenated materials. The superconducting regions of the phase separated
materials are in that sense cleaner and more homogenous than in the typical
cuprate superconductor.Comment: 4 figures 8 pages Submitted to PR
Measurement of low energy charge correlations in underdoped spin-glass La-based cuprates using impedance spectroscopy
We report on the charge kinetics of La_2CuO_4 lightly doped with Li and Sr.
Impedance spectroscopy measurements down to 25mK and from 20Hz to 500kHz reveal
evidence for low energy charge dynamics, which slow down with decreasing
temperature. Both systems are acutely sensitive to stoichiometry. In the case
of Sr substitution, which at higher carrier concentration evolves to a high
temperature superconductor, the ground state in the pseudogap-doping regime is
one of spatially segregated, dynamic charge domains. The charge carriers slow
down at substantially lower temperatures than their spin counterparts and the
dynamics are particularly sensitive to crystallographic direction. This is
contrasted with the case of Li-doping.Comment: 4 pages, 4 figure
Tunable magnetic interaction at the atomic scale in oxide heterostructures
We report on a systematic study of a number of structurally identical but
chemically distinct transition metal oxides in order to determine how the
material-specific properties such as the composition and the strain affect the
properties at the interface of heterostructures. Our study considers a series
of structures containing two layers of ferromagnetic SrRuO3, with
antiferromagnetic insulating manganites sandwiched in between. The results
demonstrate how to control the strength and relative orientation of interfacial
ferromagnetism in correlated electron materials by means of valence state
variation and substrate-induced strain, respectively
- …