59 research outputs found

    A study for the static properties of symmetric linear multiblock copolymers under poor solvent conditions

    Full text link
    We use a standard bead-spring model and molecular dynamics simulations to study the static properties of symmetric linear multiblock copolymer chains and their blocks under poor solvent conditions in a dilute solution from the regime close to theta conditions, where the chains adopt a coil-like formation, to the poorer solvent regime where the chains collapse obtaining a globular formation and phase separation between the blocks occurs. We choose interaction parameters as is done for a standard model, i.e., the Lennard-Jones fluid and we consider symmetric chains, i.e., the multiblock copolymer consists of an even number nn of alternating chemically different A and B blocks of the same length NA=NB=NN_{A}=N_{B}=N. We show how usual static properties of the individual blocks and the whole multiblock chain can reflect the phase behavior of such macromolecules. Also, how parameters, such as the number of blocks nn can affect properties of the individual blocks, when chains are in a poor solvent for a certain range of nn. A detailed discussion of the static properties of these symmetric multiblock copolymers is also given. Our results in combination with recent simulation results on the behavior of multiblock copolymer chains provide a complete picture for the behavior of these macromolecules under poor solvent conditions, at least for this most symmetrical case. Due to the standard choice of our parameters, our system can be used as a benchmark for related models, which aim at capturing the basic aspects of the behavior of various biological systems.Comment: 13 pages, 11 figure

    Coalescence of sessile polymer droplets: A molecular dynamics study

    Full text link
    Droplet coalescence is ubiquitous in nature and the same time key to various technologies, such as inkjet printing. Here, we report on the coalescence of polymer droplets with different chain lengths coalescing on substrates of different wettability. By means of molecular dynamics simulations of a coarse-grained model, it is found that the rate of bridge growth is higher in the case of droplets with smaller contact angles (more wettable substrates) and decreases with the increase of the chain length of the polymers. Different behavior has also been identified in the dynamics of the approach of the two droplets during coalescence with the substrate wettability playing a more important role compared to the chain length of the polymers. While the dynamics of the droplet are greatly affected by the latter parameters, the density profile and flow patterns remain the same for the different cases. Thus, we anticipate that our work provides further insights into the coalescence of liquid polymer droplets on solid substrates with implications for relevant technologies.Comment: 10 pages, 5 figure

    Structure of bottle-brush brushes under good solvent conditions. A molecular dynamics study

    Full text link
    We report a simulation study for bottle-brush polymers grafted on a rigid backbone. Using a standard coarse-grained bead-spring model extensive molecular dynamics simulations for such macromolecules under good solvent conditions are performed. We consider a broad range of parameters and present numerical results for the monomer density profile, density of the untethered ends of the grafted flexible backbones and the correlation function describing the range that neighboring grafted bottle-brushes are affected by the presence of the others due to the excluded volume interactions. The end beads of the flexible backbones of the grafted bottle-brushes do not access the region close to the rigid backbone due to the presence of the side chains of the grafted bottle-brush polymers, which stretch further the chains in the radial directions. Although a number of different correlation lengths exist as a result of the complex structure of these macromolecules, their properties can be tuned with high accuracy in good solvents. Moreover, qualitative differences with "typical" bottle-brushes are discussed. Our results provide a first approach to characterizing such complex macromolecules with a standard bead spring model.Comment: To appear in Journal of Physics Condensed Matter (2011

    Mixing-Demixing Transition in Polymer-Grafted Spherical Nanoparticles

    Get PDF
    Polymer-grafted nanoparticles (PGNPs) can provide property profiles than cannot be obtained individually by polymers or nanoparticles (NPs). Here, we have studied the mixing--demixing transition of symmetric copolymer melts of polymer-grafted spherical nanoparticles by means of coarse-grained molecular dynamics simulation and a theoretical mean-field model. We find that a larger size of NPs leads to higher stability for given number of grafted chains and chain length reaching a point where demixing is not possible. Most importantly, the increase in the number of grafted chains, NgN_g, can initially favour the phase separation of PGNPs, but further increase can lead to more difficult demixing. The reason is the increasing impact of an effective core that forms as the grafting density of the tethered polymer chains around the NPs increases. The range and exact values of NgN_g where this change in behaviour takes place depends on the NP size and the chain length of the grafted polymer chains. Our study elucidates the phase behaviour of PGNPs and in particular the influence of the grafting density on the phase behaviour of the systems anticipating that it will open new doors in the understanding of these systems with implications in materials science and medicine.Comment: 6 pages, 4 figures, final version to be published in Soft Matte

    Monte Carlo study of the interfacial adsorption of the Blume-Capel model

    Get PDF
    We investigate the scaling of the interfacial adsorption of the two-dimensional Blume-Capel model using Monte Carlo simulations. In particular, we study the finite-size scaling behavior of the interfacial adsorption of the pure model at both its first- and second-order transition regimes, as well as at the vicinity of the tricritical point. Our analysis benefits from the currently existing quite accurate estimates of the relevant (tri)critical-point locations. In all studied cases, the numerical results verify to a level of high accuracy the expected scenarios derived from analytic free-energy scaling arguments. We also investigate the size dependence of the interfacial adsorption under the presence of quenched bond randomness at the originally first-order transition regime (disorder-induced continuous transition) and the relevant self-averaging properties of the system. For this ex-first-order regime, where strong transient effects are shown to be present, our findings support the scenario of a non-divergent scaling, similar to that found in the original second-order transition regime of the pure model.Comment: 6 pages, 5 figures, version published in Phys. Rev. E. arXiv admin note: text overlap with arXiv:1610.0822
    • …
    corecore