19 research outputs found

    The Host-Cell Architectural Protein HMG I(Y) Modulates Binding of Herpes Simplex Virus Type 1 ICP4 to Its Cognate Promoter

    Get PDF
    AbstractThe productive infection cycle of herpes simplex virus is controlled in part by the action of ICP4, an immediate-early gene product that acts as both an activator and repressor of transcription. ICP4 is autoregulatory, and IE-3, the gene that encodes it, contains a high-affinity binding site for the protein at its cap site. Previously, we had demonstrated that this site could be occupied by proteins found in nuclear extracts from uninfected cells. A HeLa cell cDNA expression library was screened with a DNA probe containing the IE-3 gene cap site, and clones expressing the architectural chromatin proteins HMG I and HMG Y were identified by this technique. HMG I is shown to augment binding of ICP4 to its cognate site inin vitroassays and to enhance the activity of this protein in short-term transient expression assays

    Effect of polyamines and synthetic polyamine-analogues on the expression of antizyme (AtoC) and its regulatory genes

    Get PDF
    BACKGROUND: In bacteria, the biosynthesis of polyamines is modulated at the level of transcription as well as post-translationally. Antizyme (Az) has long been identified as a non-competitive protein inhibitor of polyamine biosynthesis in E. coli. Az was also revealed to be the product of the atoC gene. AtoC is the response regulator of the AtoS-AtoC two-component system and it functions as the positive transcriptional regulator of the atoDAEB operon genes, encoding enzymes involved in short chain fatty acid metabolism. The antizyme is referred to as AtoC/Az, to indicate its dual function as both a transcriptional and post-translational regulator. RESULTS: The roles of polyamines on the transcription of atoS and atoC genes as well as that of atoDAEB(ato) operon were studied. Polyamine-mediated induction was tested both in atoSC positive and negative E. coli backgrounds by using β-galactosidase reporter constructs carrying the appropriate promoters patoDAEB, patoS, patoC. In addition, a selection of synthetic polyamine analogues have been synthesized and tested for their effectiveness in inducing the expression of atoC/Az, the product of which plays a pivotal role in the feedback inhibition of putrescine biosynthesis and the transcriptional regulation of the ato operon. The effects of these compounds were also determined on the ato operon expression. The polyamine analogues were also tested for their effect on the activity of ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis and on the growth of polyamine-deficient E. coli. CONCLUSION: Polyamines, which have been reported to induce the protein levels of AtoC/Az in E. coli, act at the transcriptional level, since they cause activation of the atoC transcription. In addition, a series of polyamine analogues were studied on the transcription of atoC gene and ODC activity

    Corrigendum to "Recognition motifs for importin 4 [(L)PPRS(G/P)P] and importin 5 [KP(K/Y)LV] binding, identified by bio-informatic simulation and experimental in vitro validation" [Comput Struct Biotechnol J 20 (2022) 5952-5961]

    Get PDF
    Nuclear translocation of large proteins is mediated through karyopherins, carrier proteins recognizing specific motifs of cargo proteins, known as nuclear localization signals (NLS). However, only few NLS signals have been reported until now. In the present work, NLS signals for Importins 4 and 5 were identified through an unsupervised in silico approach, followed by experimental in vitro validation. The sequences LPPRS(G/P)P and KP(K/Y)LV were identified and are proposed as recognition motifs for Importins 4 and 5 binding, respectively. They are involved in the trafficking of important proteins into the nucleus. These sequences were validated in the breast cancer cell line T47D, which expresses both Importins 4 and 5. Elucidating the complex relationships of the nuclear transporters and their cargo proteins is very important in better understanding the mechanism of nuclear transport of proteins and laying the foundation for the development of novel therapeutics, targeting specific importins

    Escherichia coli genome-wide promoter analysis: Identification of additional AtoC binding target elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies on bacterial signal transduction systems have revealed complex networks of functional interactions, where the response regulators play a pivotal role. The AtoSC system of <it>E. coli </it>activates the expression of <it>atoDAEB </it>operon genes, and the subsequent catabolism of short-chain fatty acids, upon acetoacetate induction. Transcriptome and phenotypic analyses suggested that <it>atoSC </it>is also involved in several other cellular activities, although we have recently reported a palindromic repeat within the <it>atoDAEB </it>promoter as the single, <it>cis</it>-regulatory binding site of the AtoC response regulator. In this work, we used a computational approach to explore the presence of yet unidentified AtoC binding sites within other parts of the <it>E. coli </it>genome.</p> <p>Results</p> <p>Through the implementation of a computational <it>de novo </it>motif detection workflow, a set of candidate motifs was generated, representing putative AtoC binding targets within the <it>E. coli </it>genome. In order to assess the biological relevance of the motifs and to select for experimental validation of those sequences related robustly with distinct cellular functions, we implemented a novel approach that applies Gene Ontology Term Analysis to the motif hits and selected those that were qualified through this procedure. The computational results were validated using Chromatin Immunoprecipitation assays to assess the <it>in vivo </it>binding of AtoC to the predicted sites. This process verified twenty-two additional AtoC binding sites, located not only within intergenic regions, but also within gene-encoding sequences.</p> <p>Conclusions</p> <p>This study, by tracing a number of putative AtoC binding sites, has indicated an AtoC-related cross-regulatory function. This highlights the significance of computational genome-wide approaches in elucidating complex patterns of bacterial cell regulation.</p

    Complementation of a Herpes Simplex Virus ICP0 Null Mutant by Varicella-Zoster Virus ORF61p▿

    No full text
    The herpes simplex virus (HSV) ICP0 protein acts to overcome intrinsic cellular defenses that repress viral α gene expression. In that vein, viruses that have mutations in ICP0's RING finger or are deleted for the gene are sensitive to interferon, as they fail to direct degradation of promyelocytic leukemia protein (PML), a component of host nuclear domain 10s. While varicella-zoster virus is also insensitive to interferon, ORF61p, its ICP0 ortholog, failed to degrade PML. A recombinant virus with each coding region of the gene for ICP0 replaced with sequences encoding ORF61p was constructed. This virus was compared to an ICP0 deletion mutant and wild-type HSV. The recombinant degraded only Sp100 and not PML and grew to higher titers than its ICP0 null parental virus, but it was sensitive to interferon, like the virus from which it was derived. This analysis permitted us to compare the activities of ICP0 and ORF61p in identical backgrounds and revealed distinct biologic roles for these proteins

    Functional characterization of the histidine kinase of the E. coli two-component signal transduction system AtoS-AtoC

    No full text
    Journal URL: www.elsevier.com/locate/bbagenThe Escherichia coli AtoS-AtoC two-component signal transduction system regulates the expression of the atoDAEB operon genes, whose products are required for short-chain fatty acid catabolism. In this study purified his-tagged wild-type and mutant AtoS proteins were used to prove that these proteins are true sensor kinases. The phosphorylated residue was identified as the histidine-398, which was located in a conserved Η-box since AtoS carrying a mutation at this site failed to phosphorylate. This inability to phosphorylate was not due to gross structural alterations of AtoS since the H398L mutant retained its capability to bind ATP. Furthermore, the H398L mutant AtoS was competent to catalyze the trans-phosphorylation of an AtoS G-box (G565A) mutant protein which otherwise failed to autophosphorylate due to its inability to bind ATP. The formation of homodimers between the various AtoS proteins was also shown by cross-linking experiments both in vitro and in vivo. © 2008 Elsevier B.V. All rights reserved

    Interactions of the Antizyme AtoC with Regulatory Elements of the Escherichia coli atoDAEB Operon▿

    No full text
    AtoC has a dual function as both an antizyme, the posttranslational inhibitor of polyamine biosynthetic enzymes, and the transcriptional regulator of genes involved in short-chain fatty acid catabolism (the atoDAEB operon). We have previously shown that AtoC is the response regulator of the AtoS-AtoC two-component signal transduction system that activates atoDAEB when Escherichia coli is exposed to acetoacetate. Here, we show that the same cis elements control both promoter inducibility and AtoC binding. Chromatin immunoprecipitation experiments confirmed the acetoacetate-inducible binding of AtoC to the predicted DNA region in vivo. DNase I protection footprinting analysis revealed that AtoC binds two 20-bp stretches, constituting an inverted palindrome, that are located at −146 to −107 relative to the transcription initiation site. Analyses of promoter mutants obtained by in vitro chemical mutagenesis of the atoDAEB promoter verified both the importance of AtoC binding for the inducibility of the promoter by acetoacetate and the σ54 dependence of atoDAEB expression. The integration host factor was also identified as a critical component of the AtoC-mediated induction of atoDAEB
    corecore