56,129 research outputs found

    Rotational correlation and dynamic heterogeneity in a kinetically constrained lattice gas

    Full text link
    We study dynamical heterogeneity and glassy dynamics in a kinetically constrained lattice gas model which has both translational and rotational degrees of freedom. We find that the rotational diffusion constant tracks the structural relaxation time as density is increased whereas the translational diffusion constant exhibits a strong decoupling. We investigate distributions of exchange and persistence times for both the rotational and translational degrees of freedom and compare our results on the distributions of rotational exchange times to recent single molecule studies.Comment: 7 pages, 5 figure

    Temperature determination from the lattice gas model

    Get PDF
    Determination of temperature from experimental data has become important in searches for critical phenomena in heavy ion collisions. Widely used methods are ratios of isotopes (which rely on chemical and thermal equilibrium), population ratios of excited states etc. Using the lattice gas model we propose a new observable: nch/Zn_{ch}/Z where nchn_{ch} is the charge multiplicity and ZZ is the charge of the fragmenting system. We show that the reduced multiplicity is a good measure of the average temperature of the fragmenting system.Comment: 11 pages, 2 ps file

    Microphase transitions of block copolymer/homopolymer under shear flow

    Full text link
    Cell dynamics simulation is used to investigate the phase behavior of block copolymer/homopolymer mixture subjected to a steady shear flow. Phase transitions occur from transverse to parallel and then to perpendicular lamellar structure with an increase of shear rate and this is the result of interaction between the shear flow and the concentration fluctuation. Rheological properties, such as normal stress differences and shear viscosity, are all closely related with the direction of the lamellae. Furthermore, we specifically explore the phase behavior and the order parameter under weak and strong shear of two different initial states, and realize the importance of the thermal history. It is necessary to apply the shear field at the appropriate time if we want to get what we want. These results provide an easy method to create ordered, defect-free materials in experiment and engineering technology through imposing shear flow.Comment: 14 pages, 9 figure

    Lattice gas model for fragmentation: From Argon on Scandium to Gold on Gold

    Get PDF
    The recent fragmentation data for central collisions of Gold on Gold are even qualitatively different from those for central collisions of Argon on Scandium. The latter can be fitted with a lattice gas model calculation. Effort is made to understand why the model fails for Gold on Gold. The calculation suggests that the large Coulomb interaction which is operative for the larger system is responsible for this discrepancy. This is demonstrated by mapping the lattice gas model to a molecular dynamics calculation for disassembly. This mapping is quite faithful for Argon on Scandium but deviates strongly for Gold on Gold. The molecular dynamics calculation for disassembly reproduces the characteristics of the fragmentation data for both Gold on Gold and Argon on Scandium.Comment: 13 pages, Revtex, 8 figures in ps files, submitted to Phys. Rev.

    The induced representations of Brauer algebra and the Clebsch-Gordan coefficients of SO(n)

    Get PDF
    Induced representations of Brauer algebra Df(n)D_{f}(n) from Sf1×Sf2S_{f_{1}}\times S_{f_{2}} with f1+f2=ff_{1}+f_{2}=f are discussed. The induction coefficients (IDCs) or the outer-product reduction coefficients (ORCs) of Sf1×Sf2Df(n)S_{f_{1}}\times S_{f_{2}}\uparrow D_{f}(n) with f4f\leq 4 up to a normalization factor are derived by using the linear equation method. Weyl tableaus for the corresponding Gel'fand basis of SO(n) are defined. The assimilation method for obtaining CG coefficients of SO(n) in the Gel'fand basis for no modification rule involved couplings from IDCs of Brauer algebra are proposed. Some isoscalar factors of SO(n)SO(n1)SO(n)\supset SO(n-1) for the resulting irrep [λ1, λ2, λ3, λ4,0˙][\lambda_{1},~\lambda_{2},~ \lambda_{3},~\lambda_{4},\dot{0}] with $\sum\limits_{i=1}^{4}\lambda_{i}\leq .Comment: 48 pages latex, submitted to Journal of Phys.

    Independence Test for High Dimensional Random Vectors

    Get PDF
    This paper proposes a new mutual independence test for a large number of high dimensional random vectors. The test statistic is based on the characteristic function of the empirical spectral distribution of the sample covariance matrix. The asymptotic distributions of the test statistic under the null and local alternative hypotheses are established as dimensionality and the sample size of the data are comparable. We apply this test to examine multiple MA(1) and AR(1) models, panel data models with some spatial cross-sectional structures. In addition, in a flexible applied fashion, the proposed test can capture some dependent but uncorrelated structures, for example, nonlinear MA(1) models, multiple ARCH(1) models and vandermonde matrices. Simulation results are provided for detecting these dependent structures. An empirical study of dependence between closed stock prices of several companies from New York Stock Exchange (NYSE) demonstrates that the feature of cross-sectional dependence is popular in stock marketsIndependence test, cross-sectional dependence, empirical spectral distribution, characteristic function, Marcenko-Pastur Law

    The effect of electromechanical coupling on the strain in AlGaN/GaN heterojunction field effect transistors

    Full text link
    The strain in AlGaN/GaN heterojunction field-effect transistors (HFETs) is examined theoretically in the context of the fully-coupled equation of state for piezoelectric materials. Using a simple analytical model, it is shown that, in the absence of a two-dimensional electron gas (2DEG), the out-of-plane strain obtained without electromechanical coupling is in error by about 30% for an Al fraction of 0.3. This result has consequences for the calculation of quantities that depend directly on the strain tensor. These quantities include the eigenstates and electrostatic potential in AlGaN/GaN heterostructures. It is shown that for an HFET, the electromechanical coupling is screened by the 2DEG. Results for the electromechanical model, including the 2DEG, indicate that the standard (decoupled) strain model is a reasonable approximation for HFET calculataions. The analytical results are supported by a self-consistent Schr\"odinger-Poisson calculation that includes the fully-coupled equation of state together with the charge-balance equation.Comment: 6 figures, revte

    A posteriori teleportation

    Get PDF
    The article by Bouwmeester et al. on experimental quantum teleportation constitutes an important advance in the burgeoning field of quantum information. The experiment was motivated by the proposal of Bennett et al. in which an unknown quantum state is `teleported' by Alice to Bob. As illustrated in Fig. 1, in the implementation of this procedure, by Bouwmeester et al., an input quantum state is `disembodied' into quantum and classical components, as in the original protocol. However, in contrast to the original scheme, Bouwmeester et al.'s procedure necessarily destroys the state at Bob's receiving terminal, so a `teleported' state can never emerge as a freely propagating state for subsequent examination or exploitation. In fact, teleportation is achieved only as a postdiction.Comment: 1 page LaTeX including 1 figure. Scientific Correspondence about: "Experimental quantum teleportation" Nature 390, 575 (1997

    Nonlinear growth generates age changes in the moments of the frequency distribution: the example of height in puberty

    Get PDF
    Higher moments of the frequency distribution of child height and weight change with age, particularly during puberty, though why is not known. Our aims were to confirm that height skewness and kurtosis change with age during puberty, to devise a model to explain why, and to test the model by analyzing the data longitudinally. Heights of 3245 Christ's Hospital School boys born during 1927-1956 were measured twice termly from 9 to 20 years (n = 129 508). Treating the data as independent, the mean, standard deviation (SD), skewness, and kurtosis were calculated in 40 age groups and plotted as functions of age t. The data were also analyzed longitudinally using the nonlinear random-effects growth model H( t) = h( t - epsilon) + alpha, with H( t) the cross-sectional data, h( t) the individual mean curve, and epsilon and alpha subject-specific random effects reflecting variability in age and height at peak height velocity (PHV). Mean height increased monotonically with age, while the SD, skewness, and kurtosis changed cyclically with, respectively, 1, 2, and 3 turning points. Surprisingly, their age curves corresponded closely in shape to the first, second, and third derivatives of the mean height curve. The growth model expanded as a Taylor series in e predicted such a pattern, and the longitudinal analysis showed that adjusting for age at PHV on a multiplicative scale largely removed the trends in the higher moments. A nonlinear growth process where subjects grow at different rates, such as in puberty, generates cyclical changes in the higher moments of the frequency distribution
    corecore