34,574 research outputs found

    Nodeless superconductivity in Ir1−x_{1-x}Ptx_xTe2_2 with strong spin-orbital coupling

    Full text link
    The thermal conductivity κ\kappa of superconductor Ir1−x_{1-x}Ptx_{x}Te2_2 (xx = 0.05) single crystal with strong spin-orbital coupling was measured down to 50 mK. The residual linear term κ0/T\kappa_0/T is negligible in zero magnetic field. In low magnetic field, κ0/T\kappa_0/T shows a slow field dependence. These results demonstrate that the superconducting gap of Ir1−x_{1-x}Ptx_{x}Te2_2 is nodeless, and the pairing symmetry is likely conventional s-wave, despite the existence of strong spin-orbital coupling and a quantum critical point.Comment: 5 pages, 4 figure

    Mandarin Chinese Teacher Education Issues and solutions

    Get PDF
    Mandarin Chinese is the most widely spoken language in the world, and in a rapidly globalizing environment, speaking it is an increasingly important skill for young people in the UK. 'Mandarin Chinese Teacher Education' stems from the work of the UCL Institute of Education Confucius Institute, which supports the development of Mandarin Chinese as a language on offer in schools as part of the mainstream curriculum. This edited collection brings together researchers, teachers involved in action research and student-teachers, in an effort to address the current lack of literature specifically aimed at supporting Chinese language teachers. It features: • practical ideas for teachers of Chinese to implement in their own classrooms • evaluation of differing strategies and approaches unique to teaching Chinese • examples of using action research to help teachers reflect on their own practice while informing practice across the discipline. The book will be useful for PGCE Mandarin students, teacher trainers and those involved in the development of Mandarin Chinese in schools across the UK and further afield

    The ALMaQUEST survey – III. Scatter in the resolved star-forming main sequence is primarily due to variations in star formation efficiency

    Get PDF
    Using a sample of 11,478 spaxels in 34 galaxies with molecular gas, star formation and stellar maps taken from the ALMA-MaNGA QUEnching and STar formation (ALMaQUEST) survey, we investigate the parameters that correlate with variations in star formation rates on kpc scales. We use a combination of correlation statistics and an artificial neural network to quantify the parameters that drive both the absolute star formation rate surface density (Sigma_SFR), as well as its scatter around the resolved star forming main sequence (Delta Sigma_SFR). We find that Sigma_SFR is primarily regulated by molecular gas surface density (Sigma_H2) with a secondary dependence on stellar mass surface density (Sigma_*), as expected from an `extended Kennicutt-Schmidt relation'. However, Delta Sigma_SFR is driven primarily by changes in star formation efficiency (SFE), with variations in gas fraction playing a secondary role. Taken together, our results demonstrate that whilst the absolute rate of star formation is primarily set by the amount of molecular gas, the variation of star formation rate above and below the resolved star forming main sequence (on kpc scales) is primarily due to changes in SFE

    Unique Thermal Properties of Clothing Materials.

    Get PDF
    Cloth wearing seems so natural that everyone is self-deemed knowledgeable and has some expert opinions about it. However, to clearly explain the physics involved, and hence to make predictions for clothing design or selection, it turns out to be quite challenging even for experts. Cloth is a multiphased, porous, and anisotropic material system and usually in multilayers. The human body acts as an internal heat source in a clothing situation, thus forming a temperature gradient between body and ambient. But unlike ordinary engineering heat transfer problems, the sign of this gradient often changes as the ambient temperature varies. The human body also perspires and the sweat evaporates, an effective body cooling process via phase change. To bring all the variables into analysis quickly escalates into a formidable task. This work attempts to unravel the problem from a physics perspective, focusing on a few rarely noticed yet critically important mechanisms involved so as to offer a clearer and more accurate depiction of the principles in clothing thermal comfort

    Determination of Wave Function Functionals: The Constrained-Search--Variational Method

    Full text link
    In a recent paper [Phys. Rev. Lett. \textbf{93}, 130401 (2004)], we proposed the idea of expanding the space of variations in variational calculations of the energy by considering the approximate wave function ψ\psi to be a functional of functions χ:ψ=ψ[χ] \chi: \psi = \psi[\chi] rather than a function. The space of variations is expanded because a search over the functions χ\chi can in principle lead to the true wave function. As the space of such variations is large, we proposed the constrained-search-- variational method whereby a constrained search is first performed over all functions χ\chi such that the wave function functional ψ[χ]\psi[\chi] satisfies a physical constraint such as normalization or the Fermi-Coulomb hole sum rule, or leads to the known value of an observable such as the diamagnetic susceptibility, nuclear magnetic constant or Fermi contact term. A rigorous upper bound to the energy is then obtained by application of the variational principle. A key attribute of the method is that the wave function functional is accurate throughout space, in contrast to the standard variational method for which the wave function is accurate only in those regions of space contributing principally to the energy. In this paper we generalize the equations of the method to the determination of arbitrary Hermitian single-particle operators as applied to two-electron atomic and ionic systems. The description is general and applicable to both ground and excited states. A discussion on excited states in conjunction with the theorem of Theophilou is provided.Comment: 26 pages, 4 figures, 5 table

    Estimating factor models for multivariate volatilities : an innovation expansion method

    Get PDF
    We introduce an innovation expansion method for estimation of factor models for conditional variance (volatility) of a multivariate time series. We estimate the factor loading space and the number of factors by a stepwise optimization algorithm on expanding the "white noise space". Simulation and a real data example are given for illustration
    • …
    corecore