12 research outputs found
SODs involved in the hormone mediated regulation of H 2 O 2 content in Kandelia obovata root tissues under cadmium stress
Abstract(#br)Cadmium (Cd) pollution in mangrove wetlands has received increasing attention as urbanization expands rapidly. As a dominant mangrove species, Kandelia obovata is highly tolerant to Cd toxicity. Plant hormones and superoxide dismutase (SODs) play critical roles in the response to heavy metal stress in K. obovata roots. Although theirs important influence have been reported, the regulation mechanism between SODs and plant hormones in Cd detoxification by K. obovata roots remains limited. Here, we investigated relationships among SOD, plant hormones, and Cd tolerance in K. obovata roots exposed to Cd. We found that Cd was retained in the epidermis and exodermis of roots, and the epidermis and exodermis had highest hydrogen peroxide (H 2 O 2 ) content and SOD activity. Similarly, SOD isozymes also exhibited distinct activity in the different parts of root. Overexpressed KoCSD3 and KoFSD2 individually in Nicotiana benthamiana revealed that different SOD members contributed to H 2 O 2 content regulation by promote the activity of downstream antioxidant enzymes under Cd treatment. In addition, assays on the effects of hormones showed that increased endogenous indole-3-acetic acid (IAA) was observed in the cortex and stele, whereas the abscisic acid (ABA) content was enhanced in the epidermis and exodermis in roots during Cd treatment. The results of exogenous hormones treatment indicated that KoFSD2 upregulated under ABA and IAA treatment, but KoCSD3 only induced by ABA stimulation. Taken together, our results reveal the relationship between SODs and plant hormones, which expands the knowledge base regarding KoSODs response to plant hormones and mediating H 2 O 2 concentration under Cd stress
SODs involved in the hormone mediated regulation of H2O2 content in Kandelia obovata root tissues under cadmium stress.
Cadmium (Cd) pollution in mangrove wetlands has received increasing attention as urbanization expands rapidly. As a dominant mangrove species, Kandelia obovata is highly tolerant to Cd toxicity. Plant hormones and superoxide dismutase (SODs) play critical roles in the response to heavy metal stress in K. obovata roots. Although theirs important influence have been reported, the regulation mechanism between SODs and plant hormones in Cd detoxification by K. obovata roots remains limited. Here, we investigated relationships among SOD, plant hormones, and Cd tolerance in K. obovata roots exposed to Cd. We found that Cd was retained in the epidermis and exodermis of roots, and the epidermis and exodermis had highest hydrogen peroxide (H2O2) content and SOD activity. Similarly, SOD isozymes also exhibited distinct activity in the different parts of root. Overexpressed KoCSD3 and KoFSD2 individually in Nicotiana benthamiana revealed that different SOD members contributed to H2O2 content regulation by promote the activity of downstream antioxidant enzymes under Cd treatment. In addition, assays on the effects of hormones showed that increased endogenous indole-3-acetic acid (IAA) was observed in the cortex and stele, whereas the abscisic acid (ABA) content was enhanced in the epidermis and exodermis in roots during Cd treatment. The results of exogenous hormones treatment indicated that KoFSD2 upregulated under ABA and IAA treatment, but KoCSD3 only induced by ABA stimulation. Taken together, our results reveal the relationship between SODs and plant hormones, which expands the knowledge base regarding KoSODs response to plant hormones and mediating H2O2 concentration under Cd stress
Boosted Sine Cosine Algorithm with Application to Medical Diagnosis
The sine cosine algorithm (SCA) was proposed for solving optimization tasks, of which the way to obtain the optimal solution is mainly through the continuous iteration of the sine and cosine update formulas. However, SCA also faces low population diversity and stagnation of locally optimal solutions. Hence, we try to eliminate these problems by proposing an enhanced version of SCA, named ESCA_PSO. ESCA_PSO is proposed based on hybrid SCA and particle swarm optimization (PSO) by incorporating multiple mutation strategies into the original SCA_PSO. To validate the effect of ESCA_PSO in handling global optimization problems, ESCA_PSO was compared with quality algorithms on various types of benchmark functions. In addition, the proposed ESCA_PSO was employed to tune the best parameters of support vector machines for dealing with medical diagnosis tasks. The results prove the efficiency of the proposed algorithms in solving optimization problems.</jats:p
Visualizing the Knowledge Structure and Research Evolution of Infrared Detection Technology Studies
This paper aims to explore the current status, research trends and hotspots related to the field of infrared detection technology through bibliometric analysis and visualization techniques based on the Science Citation Index Expanded (SCIE) and Social Sciences Citation Index (SSCI) articles published between 1990 and 2018 using the VOSviewer and Citespace software tools. Based on our analysis, we first present the spatiotemporal distribution of the literature related to infrared detection technology, including annual publications, origin country/region, main research organization, and source publications. Then, we report the main subject categories involved in infrared detection technology. Furthermore, we adopt literature cocitation, author cocitation, keyword co-occurrence and timeline visualization analyses to visually explore the research fronts and trends, and present the evolution of infrared detection technology research. The results show that China, the USA and Italy are the three most active countries in infrared detection technology research and that the Centre National de la Recherche Scientifique has the largest number of publications among related organizations. The most prominent research hotspots in the past five years are vibration thermal imaging, pulse thermal imaging, photonic crystals, skin temperature, remote sensing technology, and detection of delamination defects in concrete. The trend of future research on infrared detection technology is from qualitative to quantitative research development, engineering application research and infrared detection technology combined with other detection techniques. The proposed approach based on the scientific knowledge graph analysis can be used to establish reference information and a research basis for application and development of methods in the domain of infrared detection technology studies.</jats:p
Comparative transcriptome analysis reveals different functions of Kandelia obovata superoxide dismutases in regulation of cadmium translocation
Health risk assessment of heavy metal and its mitigation by glomalin-related soil protein in sediments along the South China coast
SODs involved in the hormone mediated regulation of H2O2 content in Kandelia obovata root tissues under cadmium stress
Research Progress on PCR (Plant Cadmium Resistance) Genes in Plants
Heavy metal pollution is becoming increasingly severe, and cadmium (Cd) is one of the most threatening pollutants. The PCR (Plant cadmium resistance) gene encodes a class of small transmembrane proteins containing the PLAC8 motif, which confer cadmium tolerance to plants through multiple mechanisms such as efflux, compartmentalization, chelation, and antioxidant activity, and regulate fruit size and ion homeostasis. This study systematically integrated the PLAC8/PCR gene families from mosses, monocots, and dicots, revealing their structural and functional relationships, evolutionary trajectories, and functional diversification patterns through phylogenetic and motif analyses, providing a theoretical basis for cadmium-resistant breeding and environmental remediation. Future research should further integrate multi-omics and gene editing technologies to deeply elucidate the transport mechanism of the PCR protein pentamer and the functional differences of key motifs (CCXXXXCPC, CCXXCAL, and CCXXG), and conduct field trials to assess their ecological safety and crop application potential
The genome size, chromosome number and the seed adaption to long-distance dispersal of Ipomoea pes-caprae (L.)
Ipomoeapes-caprae (L.) (IPC) is a common species in tropical and subtropical coastal areas and one of the world’s most widely distributed plants. It has attracted researchers for its outstanding biological, ecological and medicinal values. It has been reported that the genetic diversity of IPCs located on different continents is very low because of their frequent gene flow. During the long journey of evolution, every aspect of the plant morphologies has evolved to the best adaptivity to the environment, seeking their survival and progeny expansion. However, the fundamental genetic characteristics of IPC and how their seed adapted to the success of population expansion remain unknown. In this study, the fundamental genetic characteristics, including the genome size and the chromosome number of IPC, were investigated. The results showed that IPC’s genome size is approximately 0.98-1.08 GB, and the chromosome number is 2n=30, providing the basic information for further genome analysis. In order to decipher the long-distance dispersal secret of this species, the fruit and seed developments, seed morphology, and seed germination were extensively investigated and described. The results showed an exquisite adaptive mechanism of IPC seeds to fulfil the population expansion via ocean currents. The large cavity inside the seeds and the dense tomenta on the surface provide the buoyancy force for the seeds to float on the seawater. The hard seed coats significantly obstructed the water absorption, thus preventing the seed from germination during the dispersal. Meanwhile, the fully developed embryos of IPC also have physiological dormancy. The physical and physiological characteristics of IPC seeds provide insight into the mechanism of their long-distance dispersal across the oceans. Moreover, based on morphological observation and semi-section microscopy, the development pattern of IPC glander trichomes was described, and their physiological functions were also discussed.</jats:p
DataSheet_1_Function verification of a chlorophyll a/b binding protein gene through a newly established tobacco rattle virus-induced gene silencing system in Kandelia obovata.pdf
As an important mangrove species, Kandelia obovata plays an irreplaceable role in the coastal ecosystem. However, due to a lack of genetic technology, there is limited research on its functional genes. As such, establishing an efficient and rapid functional verification system is particularly important. In this study,tobacco rattle virus (TRV) and the phytoene desaturase gene KoPDS were used as the vector and target gene, respectively, to establish a virus-induced gene silencing system (VIGS) in K. obovata. Besides, the system was also used to verify the role of a Chlorophyll a/b binding protein (Cab) gene KoCAB in leaf carbon sequestration of K. obovata.RNA-Seq and qRT-PCR showed that the highest gene-silencing efficiency could reach 90% after 10 days of inoculation and maintain above 80% after 15 days, which was achieved with resuspension buffer at pH 5.8 and Agrobacterium culture at OD600 of 0.4-0.6. Taken together, the TRV-mediated VIGS system established herein is the first genetic analysis tool for mangroves, which may greatly impel functional genomics studies in mangrove plants.</p
