1,161 research outputs found

    Quantum key distribution without alternative measurements

    Full text link
    Entanglement swapping between Einstein-Podolsky-Rosen (EPR) pairs can be used to generate the same sequence of random bits in two remote places. A quantum key distribution protocol based on this idea is described. The scheme exhibits the following features. (a) It does not require that Alice and Bob choose between alternative measurements, therefore improving the rate of generated bits by transmitted qubit. (b) It allows Alice and Bob to generate a key of arbitrary length using a single quantum system (three EPR pairs), instead of a long sequence of them. (c) Detecting Eve requires the comparison of fewer bits. (d) Entanglement is an essential ingredient. The scheme assumes reliable measurements of the Bell operator.Comment: REVTeX, 5 pages, 2 figures. Published version with some comment

    Multipartite entanglement in 2 x 2 x n quantum systems

    Get PDF
    We classify multipartite entangled states in the 2 x 2 x n (n >= 4) quantum system, for example the 4-qubit system distributed over 3 parties, under local filtering operations. We show that there exist nine essentially different classes of states, and they give rise to a five-graded partially ordered structure, including the celebrated Greenberger-Horne-Zeilinger (GHZ) and W classes of 3 qubits. In particular, all 2 x 2 x n-states can be deterministically prepared from one maximally entangled state, and some applications like entanglement swapping are discussed.Comment: 9 pages, 3 eps figure

    A Two-Step Quantum Direct Communication Protocol Using Einstein-Podolsky-Rosen Pair Block

    Full text link
    A protocol for quantum secure direct communication using blocks of EPR pairs is proposed. A set of ordered NN EPR pairs is used as a data block for sending secret message directly. The ordered NN EPR set is divided into two particle sequences, a checking sequence and a message-coding sequence. After transmitting the checking sequence, the two parties of communication check eavesdropping by measuring a fraction of particles randomly chosen, with random choice of two sets of measuring bases. After insuring the security of the quantum channel, the sender, Alice encodes the secret message directly on the message-coding sequence and send them to Bob. By combining the checking and message-coding sequences together, Bob is able to read out the encoded messages directly. The scheme is secure because an eavesdropper cannot get both sequences simultaneously. We also discuss issues in a noisy channel.Comment: 8 pages and 2 figures. To appear in Phys Rev

    Preparation of polarization entangled mixed states of two photons

    Full text link
    We propose a scheme for preparing arbitrary two photons polarization entangled mixed states via controlled location decoherence. The scheme uses only linear optical devices and single-mode optical fibers, and may be feasible in experiment within current optical technology.Comment: 3 pages, 5 figs. The article has been rewritten. Discussion about experiment are added. To appear in Phys. Rev.

    Probabilistic instantaneous quantum computation

    Full text link
    The principle of teleportation can be used to perform a quantum computation even before its quantum input is defined. The basic idea is to perform the quantum computation at some earlier time with qubits which are part of an entangled state. At a later time a generalized Bell state measurement is performed jointly on the then defined actual input qubits and the rest of the entangled state. This projects the output state onto the correct one with a certain exponentially small probability. The sufficient conditions are found under which the scheme is of benefit.Comment: 4 pages, 1 figur

    Generalized measurements by linear elements

    Get PDF
    I give a first characterization of the class of generalized measurements that can be exactly realized on a pair of qudits encoded in indistinguishable particles, by using only linear elements and particle detectors. Two immediate results follow from this characterization. (i) The Schmidt number of each POVM element cannot exceed the number of initial particles. This rules out any possibility of performing perfect Bell-measurements for qudits. (ii) The maximum probability of performing a generalized incomplete Bell-measurement is 1/2.Comment: 4 pages. Submitted to Phys. Rev.

    Maximal entanglement of squeezed vacuum states via swapping with number-phase measurement

    Get PDF
    We propose a method to refine entanglement via swapping from a pair of squeezed vacuum states by performing the Bell measurement of number sum and phase difference. The resultant states are maximally entangled by adjusting the two squeezing parameters to the same value. We then describe the teleportation of number states by using the entangled states prepared in this way.Comment: 4 pages, 1 PS figure, RevTe

    Complementarity and Information in "Delayed-choice for entanglement swapping"

    Full text link
    Building on Peres's idea of "Delayed-choice for extanglement swapping" we show that even the degree to which quantum systems were entangled can be defined after they have been registered and may even not exist any more. This does not arise as a paradox if the quantum state is viewed as just a representative of information. Moreover such a view gives a natural quantification of the complementarity between the measure of information about the input state for teleportation and the amount of entanglement of the resulting swapped entangled state.Comment: 5 pages, 2 figures, submitted to the special issue of Foundation of Physics in honor of Asher Peres' 70th birthda

    Practical quantum repeaters with linear optics and double-photon guns

    Get PDF
    We show how to create practical, efficient, quantum repeaters, employing double-photon guns, for long-distance optical quantum communication. The guns create polarization-entangled photon pairs on demand. One such source might be a semiconducter quantum dot, which has the distinct advantage over parametric down-conversion that the probability of creating a photon pair is close to one, while the probability of creating multiple pairs vanishes. The swapping and purifying components are implemented by polarizing beam splitters and probabilistic optical CNOT gates.Comment: 4 pages, 4 figures ReVTe

    Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state

    Get PDF
    We propose a scheme to implement a single-mode quantum filter, which selectively eliminates the one-photon state in a quantum state α0>+β1>+γ2>\alpha|0>+\beta|1>+\gamma|2>. The vacuum state and the two photon state are transmitted without any change. This scheme requires single-photon sources, linear optical elements and photon detectors. Furthermore we demonstrate, how this filter can be used to realize a two-qubit projective measurement and to generate multi-photon polarization entangled states.Comment: revision submitted to PR
    corecore