4 research outputs found

    Genome-wide association study of panic disorder reveals genetic overlap with neuroticism and depression

    Get PDF
    Panic disorder (PD) has a lifetime prevalence of 2-4% and heritability estimates of 40%. The contributory genetic variants remain largely unknown, with few and inconsistent loci having been reported. The present report describes the largest genome-wide association study (GWAS) of PD to date comprising genome-wide genotype data of 2248 clinically well-characterized PD patients and 7992 ethnically matched controls. The samples originated from four European countries (Denmark, Estonia, Germany, and Sweden). Standard GWAS quality control procedures were conducted on each individual dataset, and imputation was performed using the 1000 Genomes Project reference panel. A meta-analysis was then performed using the Ricopili pipeline. No genome-wide significant locus was identified. Leave-one-out analyses generated highly significant polygenic risk scores (PRS) (explained variance of up to 2.6%). Linkage disequilibrium (LD) score regression analysis of the GWAS data showed that the estimated heritability for PD was 28.0-34.2%. After correction for multiple testing, a significant genetic correlation was found between PD and major depressive disorder, depressive symptoms, and neuroticism. A total of 255 single-nucleotide polymorphisms (SNPs) with p < 1 × 10-4 were followed up in an independent sample of 2408 PD patients and 228,470 controls from Denmark, Iceland and the Netherlands. In the combined analysis, SNP rs144783209 showed the strongest association with PD (pcomb = 3.10  × 10-7). Sign tests revealed a significant enrichment of SNPs with a discovery p-value of <0.0001 in the combined follow up cohort (p = 0.048). The present integrative analysis represents a major step towards the elucidation of the genetic susceptibility to PD

    Blue and Red Light Modulates SigB-Dependent Gene Transcription, Swimming Motility and Invasiveness in Listeria monocytogenes

    Get PDF
    Background: In a number of gram-positive bacteria, including Listeria, the general stress response is regulated by the alternative sigma factor B (SigB). Common stressors which lead to the activation of SigB and the SigB-dependent regulon are high osmolarity, acid and several more. Recently is has been shown that also blue and red light activates SigB in Bacillus subtilis. Methodology/Principal Findings: By qRT-PCR we analyzed the transcriptional response of the pathogen L. monocytogenes to blue and red light in wild type bacteria and in isogenic deletion mutants for the putative blue-light receptor Lmo0799 and the stress sigma factor SigB. It was found that both blue (455 nm) and red (625 nm) light induced the transcription of sigB and SigB-dependent genes, this induction was completely abolished in the SigB mutant. The blue-light effect was largely dependent on Lmo0799, proving that this protein is a genuine blue-light receptor. The deletion of lmo0799 enhanced the red-light effect, the underlying mechanism as well as that of SigB activation by red light remains unknown. Blue light led to an increased transcription of the internalin A/B genes and of bacterial invasiveness for Caco-2 enterocytes. Exposure to blue light also strongly inhibited swimming motility of the bacteria in a Lmo0799- and SigB-dependent manner, red light had no effect there. Conclusions/Significance: Our data established that visible, in particular blue light is an important environmental signal with an impact on gene expression and physiology of the non-phototrophic bacterium L. monocytogenes. In natural environments these effects will result in sometimes random but potentially also cyclic fluctuations of gene activity, depending on the light conditions prevailing in the respective habitat

    The Role of Alternative Sigma Factors in Pathogen Virulence

    No full text
    Alternative sigma factors enable bacteria to change the promoter specificity of the core RNA polymerase to enable the expression of genes that give them advantages in particular situations. The number of alternative sigma factors that bacteria produce varies greatly. Some bacteria, particularly those that reside in the soil have genes for multiple sigma factors. The soil living gram positive bacteria Sorangium cellulosum currently holds the record for the number of sigma factor genes at 109. Alternative sigma factors play important roles in the life cycle of many foodborne bacterial pathogens. In this review we will discuss: the structure and function of alternative sigma factors; the different families of alternative sigma factors; their regulation; the role of particular alternative sigma factors and the genes they control in the biology (particularly pathogenesis) of foodborne bacterial pathogens

    Genome-wide association study of panic disorder reveals genetic overlap with neuroticism and depression

    No full text
    corecore