662 research outputs found

    Hydrogen sulfide, a cardioprotective agent in ischemic heart

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Guanylate-binding protein 1 participates in cellular antiviral response to dengue virus

    Get PDF
    BACKGROUND: Dengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus found in tropical and sub-tropical regions around the world. Vaccines against DENV are currently unavailable. Guanylate-binding protein 1 (GBP1) is one of the Interferon (IFN) stimulated genes (ISGs) and has been shown important for host immune defense against various pathogens. However, the role of GBP1 during DENV infection remains unclarified. In this study, we evaluated the relevance of GBP1 to DENV infection in in vitro model. FINDINGS: Quantitative RT-PCR (qRT-PCR) and Western blot showed that the expression of mouse Gbp1 was dramatically upregulated in DENV-infected RAW264.7 cells. The intracellular DENV loads were significantly higher in Gbp1 silenced cells compared with controls. The expression levels of selective anti-viral cytokines were decreased in Gbp1 siRNA treated cells, while the transcription factor activity of NF-κB was impaired upon GBP1 silencing during infection. CONCLUSIONS: Our data suggested that GBP1 plays an antiviral role during DENV infection

    The fabrication of electrochemical geophone based on FPCB process technology

    Get PDF
    The subject of the studies presented in this paper is the fabrication of electrochemical geophone, especially the electrochemical transducer with symmetrical four-electrode cell by FPCB process technology. The geophone assembled by transducer, dumbbell-shaped tube, highly-flexible membranes, electrolyte solution and signal-amplification circuit, is calibrated using a standard vibration platform, and the results show a good consistency of each geophone parameters. Coupled with low cost, the electrochemical geophone by FPCB shows a good potential application prospect

    Dietary choline supplementation attenuated high-fat diet-induced inflammation through regulation of lipid metabolism and suppression of NFKB activation in juvenile black seabream (Acanthopagrus schlegelii)

    Get PDF
    The present study aimed to investigate whether dietary choline can regulate lipid metabolism and suppress NFκB activation and, consequently, attenuate inflammation induced by a high-fat diet in black sea bream (Acanthopagrus schlegelii). An 8-week feeding trial was conducted on fish with an initial weight of 8·16 ± 0·01 g. Five diets were formulated: control, low-fat diet (11 %); HFD, high-fat diet (17 %); and HFD supplemented with graded levels of choline (3, 6 or 12 g/kg) termed HFD + C1, HFD + C2 and HFD + C3, respectively. Dietary choline decreased lipid content in whole body and tissues. Highest TAG and cholesterol concentrations in serum and liver were recorded in fish fed the HFD. Similarly, compared with fish fed the HFD, dietary choline reduced vacuolar fat drops and ameliorated HFD-induced pathological changes in liver. Expression of genes of lipolysis pathways were up-regulated, and genes of lipogenesis down-regulated, by dietary choline compared with fish fed the HFD. Expression of nfκb and pro-inflammatory cytokines in liver and intestine was suppressed by choline supplementation, whereas expression of anti-inflammatory cytokines was promoted in fish fed choline-supplemented diets. In fish that received lipopolysaccharide to stimulate inflammatory responses, the expression of nfκb and pro-inflammatory cytokines in liver, intestine and kidney were all down-regulated by dietary choline compared with the HFD. Overall, the present study indicated that dietary choline had a lipid-lowering effect, which could protect the liver by regulating intrahepatic lipid metabolism, reducing lipid droplet accumulation and suppressing NFκB activation, consequently attenuating HFD-induced inflammation in A. schlegelii

    Synthesis and Immobilization of Pt Nanoparticles on Amino-Functionalized Halloysite Nanotubes toward Highly Active Catalysts

    Get PDF
    A simple and effective method for the preparation of platinum nanoparticles (Pt NPs) grown on amino-functionalized halloysite nanotubes (HNTs) was developed. The nanostructures were synthesized through the functionalization of the HNTs, followed by an in situ approach to generate Pt NPs with diameter of approximately 1.5 nm within the entire HNTs. The synthesis process, composition and morphology of the nanostructures were characterized. The results suggest PtNPs/NH2-HNTs nanostructures with ultrafine PtNPs were successfully synthesized by green chemically-reducing H2PtCl6 without the use of surfactant. The nanostructures exhibit promising catalytic properties for reducing potassium hexacyanoferrate(III) to potassium hexacyanoferrate(II). The presented experiment for novel PtNPs/NH2-HNTs nanostructures is quite simple and environmentally benign, permitting it as a potential application in the future field of catalysts

    Continuous Synthesis of Ag/TiO 2

    Get PDF
    A facile and environmental friendly synthesis strategy based on pulsed laser ablation has been developed for potential mass production of Ag-loaded TiO2 (Ag/TiO2) nanoparticles. By sequentially irradiating titanium and silver target substrates, respectively, with the same 1064 nm 100 ns fiber laser, Ag/TiO2 particles can be fabricated. A postannealing process leads to the crystallization of TiO2 to anatase phase with high photocatalytic activity. The phase composition, microstructure, and surface state of the elaborated Ag/TiO2 are characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDX), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) techniques. The results suggest that the presence of silver clusters deposited on the surface of TiO2 nanoparticles. The nanostructure is formed through laser interaction with materials. Photocatalytic activity evaluation shows that silver clusters could significantly enhance the photocatalytic activity of TiO2 in degradation of methylene blue (MB) under UV light irradiation, which is attributed to the efficient electron traps by Ag clusters. Our developed Ag/TiO2 nanoparticles synthesized via a straightforward, continuous, and green pathway could have great potential applications in photocatalysis

    Association of sleep complaints with all-cause and heart disease mortality among US adults

    Get PDF
    IntroductionCompared with sleep disorders, no consensus has been reached on whether a subjective complaint of having trouble sleeping is associated with increased all-cause and heart disease mortality risk. Previous studies displayed considerable heterogeneity in population disease characteristics and duration of follow-up. Therefore, the aims of this study were to examine the relationship between sleep complaints and all-cause and heart disease mortality and whether the associations were influenced by follow-up time and population disease characteristics. In addition, we aimed to figure out the influence of the joint effects of sleep duration and sleep complaints on mortality risk.MethodsThe present study utilized data from five cycles of the National Health and Nutrition Examination Survey (NHANES) (2005~2014) linked with the most updated 2019 National Death Index (NDI). Sleep complaints were determined by answers to “Have you ever told a doctor or other health professional that you have trouble sleeping?” and “Have you ever been told by a doctor or other health professional that you have a sleep disorder?”. Those who answered ‘Yes' to either of the aforementioned two questions were considered as having sleep complaints.ResultsA total of 27,952 adult participants were included. During a median follow-up of 9.25 years (interquartile range, 6.75–11.75 years), 3,948 deaths occurred and 984 were attributable to heart disease. A multivariable-adjusted Cox model revealed that sleep complaints were significantly associated with all-cause mortality risk (HR, 1.17; 95% CI, 1.07–1.28). Subgroup analysis revealed that sleep complaints were associated with all-cause (HR, 1.17; 95% CI, 1.05–1.32) and heart disease (HR, 1.24; 95% CI, 1.01–1.53) mortality among the subgroup with cardiovascular disease (CVD) or cancer. In addition, sleep complaints were more strongly associated with short-term mortality than long-term mortality. The joint analysis of sleep duration and sleep complaints showed that sleep complaints mainly increased the mortality risk in those with short (< 6 h/day, sleep complaints HR, 1.40; 95% CI, 1.15–1.69) or recommended (6–8 h/day, sleep complaints HR, 1.15; 95% CI, 1.01–1.31) sleep duration group.DiscussionIn conclusion, sleep complaints were associated with increased mortality risk, indicating a potential public benefit of monitoring and managing sleep complaints in addition to sleep disorders. Of note, persons with a history of CVD or cancer may represent a potentially high-risk group that should be targeted with a more aggressive intervention of sleep problems to prevent premature all-cause and heart disease death

    Orexin-A protects against oxygen-glucose deprivation/reoxygenation-induced cell damage by inhibiting endoplasmic reticulum stress-mediated apoptosis via the Gi and PI3K signaling pathways

    Get PDF
    The neuropeptide orexin-A (OXA) has a neuroprotective effect, acting as an anti-apoptotic factor in response to multiple stimuli. Apoptosis induced by endoplasmic reticulum stress (ERS) underlies oxygen-glucose deprivation and reoxygenation (OGD/R)-induced cell damage, an in vitro model of ischemia/reperfusion injury. However, that OXA inhibits ERS-induced apoptosis in the OGD/R model has not been reported. In the present study, we investigated the neuroprotective effect of OXA (0.1 μM) on OGD/R-induced damage in the human neuroblastoma cell line SH-SY5Y. After OXA treatment following 4 h oxygen-glucose deprivation (OGD) and then 4 h reoxygenation (R), cell morphology, viability, and apoptosis were analyzed by histology, Cell Counting Kit-8 assay, and flow cytometry, respectively. Western blotting was used to measure expression levels of ERS- and apoptosis-related proteins. To determine signaling pathways involved in OXA-mediated neuroprotection, the Gi pathway inhibitor pertussis toxin (PTX; 100 ng/mL) and PI3K inhibitor LY294002 (LY; 10 μM) were added. In addition, in order to prove the specificity of these characteristics, the OXA antagonist Suvorexant (DORA; Ki of 0.55 nM and 0.35 nM for OX1R and OX2R) was used for intervention. Our results showed that OGD/R induced cell damage, manifested as morphological changes and a significant decrease in viability. Furthermore, Western blotting detected an increase in ERS-related proteins GRP78, p-IRE1α, p-JNK, and Cleaved caspase-12, as well as apoptosis-related proteins Cleaved caspase-3 and Bax, and a decrease in the anti-apoptosis factor Bcl-2. OXA intervention alleviated the degree of cellular damage, and protein expression was also reversed. In addition, the protective effect of OXA was reduced by adding PTX and LY. Meanwhile, after the use of DORA, changes in the expression of related proteins were detected, and it was found that the protective effect of OXA was weakened. Collectively, our results indicate that OXA has a neuroprotective effect on OGD/R-induced cell damage by inhibiting ERS-induced apoptosis through the combined action of Gi and PI3K signaling pathways. These findings help to clarify the mechanism underlying the neuroprotective action of OXA, which should aid the development of further candidate drugs, and provide a new therapeutic direction for the treatment of ischemic stroke

    Association Between Post-procedure Cerebral Blood Flow Velocity and Severity of Brain Edema in Acute Ischemic Stroke With Early Endovascular Therapy

    Get PDF
    ObjectivesWe aimed to investigate the association between post-procedure cerebral blood flow velocity (CBFV) and severity of brain edema in patients with acute ischemic stroke (AIS) who received early endovascular therapy (EVT).MethodsWe retrospectively included patients with AIS who received EVT within 24 h of onset between February 2016 and November 2021. Post-procedure CBFV of the middle cerebral artery was measured in the affected and the contralateral hemispheres using transcranial Doppler ultrasound. The severity of brain edema was measured using the three-level cerebral edema grading from the Safe Implementation of Thrombolysis in Stroke-Monitoring Study, with grades 2–3 indicating severe brain edema. The Association between CBFV parameters and severity of brain edema was analyzed.ResultsA total of 101 patients (mean age 64.2 years, 65.3% male) were included, of whom 56.3% (57/101) suffered brain edema [grade 1, 23 (22.8%); grade 2, 10 (9.9%); and grade 3, 24 (23.8%)]. Compared to patients with non-severe brain edema, patients with severe brain edema had lower affected/contralateral ratios of systolic CBFV (median 1 vs. 1.2, P = 0.020) and mean CBFV (median 0.9 vs. 1.3, P = 0.029). Multivariate logistic regression showed that severe brain edema was independently associated with affected/contralateral ratios of systolic CBFV [odds ratio (OR) = 0.289, 95% confidence interval (CI): 0.069–0.861, P = 0.028] and mean CBFV (OR = 0.278, 95% CI: 0.084–0.914, P = 0.035) after adjusting for potential confounders.ConclusionPost-procedure affected/contralateral ratio of CBFV may be a promising predictor of brain edema severity in patients with AIS who received early EVT
    corecore