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SUMMARY

Ischemic heart disease is the leading cause ohdmathe western society and is becoming
increasingly a major health problem in developimgirdries. In the current study, the role of
hydrogen sulfide (kB) in the cardioprotection against ischemic injugs investigated in both

invitro andin vivo models.

The effects of endogenous and exogenoyS iere first examined in isolated adult rat
cardiomyocytes. Endogenous,3 production was found to be suppressed in cardiogigs
subjected to lethal ischemia. Preconditioning tle#iscwith brief ischemia partly restored
endogenous §$ level. Inhibition of HS biosynthesis blocked the early and late cardieptimn
induced by ischemic preconditioning, indicatingtte@dogenous ¥$ was necessary for the
development of both early and late cardioproteatibischemic preconditioning. To examine the
effect of exogenous 43, cardiomyocytes were preconditioned with gsHlonor, NaHS, at
concentrations of I®to 10° mol/L. H,S preconditioning produced a concentration-dependen
protection against ischemia-caused cell death, hudbogy change and impairment on cell
function. A time course study showed thaiSHnduced cardioprotection occurred in 2 time
windows (early phase, ~1 h, and late phase, 16}2ht was effective to counteract different
periods of ischemia and reperfusion. The late oardiection was blocked in the presence of a
sarcolemmal Krp channel blocker, a nitric oxide synthase inhibitar a PKC inhibitor,
suggesting their involvement in the signaling pahwf HS preconditioning. Western blotting
analysis confirmed that 43 preconditioning activated three isoforms of PKCg andd. The
activated PKC mediated the acceleration of cytos@iE€* clearing which in turn prevented

cytosolic C&" accumulation and myocytes hypercontracture dusicigemia and reperfusion.



In a rat model of myocardial infarction, the effemtt H,S was examinedn vivo with
intraperitoneal injection of NaHS. Assessment daict size revealed that a single bolus of
NaHS administered one day before MI reduced infaioé by 78% at the optimal dose of
1umol/kg, whereas rats receiving three bolusesatfi®lonce per day after Ml only displayed a
maximum reduction of 38% in infarct size. A comladneeatment of both preconditioning and
post-treatment did not produce stronger protectian that produced by 8B preconditioning
alone. Furthermore, 49 preconditioning also remarkably reduced LV dtiata and wall

thinning, as manifested by LV internal diameter anterior wall thickness.

In conclusion, the current study has demonstrdtatifS is a potent cardioprotective agent
against ischemic injury. #$ preconditioning may represent an effective andmmsing

intervention for ischemic heart disease.



Chapter 1 Introduction

1.1 General Overview

Ischemic heart disease, mainly manifested by myahinfarction, is a syndrome
characterized by high mortality, frequent hosprtiion and reduced life quality. As a
global health problem, ischemic heart diseaseté&xl@s the leading cause of death in 13
countries, primarily in US and most European cadaat{American Heart Association,
2008). In Singapore, ischemic heart disease acsdantl8.5% of total death, ranked as

the second most common cause of mortality in 20d6i§try of Health, 2006).

Despite remarkable advances in basic science anitat|studies, preventing and
reversing ischemic heart disease remains a gredlenge to scientists and clinicians
working for the health of millions of patients wdwide. In the 20th century, classical
physiology studies provided valuable insight inte tpathophysiologpf myocardial
ischemia and reperfusion. Next to reperfuslerapy, preconditioning of the heart with
nonlethal ischemiepisodes emerged in the late 1980s as a promisagansnto limit
damage bynyocardial infarction. It then became clear tha tlardioprotectiveffect of
preconditioning is mediated by certain signal tdutsionmolecules. Elucidating the
intracellular signal transduction mediated by thesdecules allowed the identificatioh
pharmacological agents that can mimic the cardieptmn without ischemia. Studies
driven by this particular interest have derivegacsal field in the cardioprotection called
pharmacological preconditioning and translatiorthe#f basic science findings from this

field into clinical use is yielding encouraging ués.



Over the past decades, the focus of resdarcardioprotection against myocardial
ischemia has shiftelom physiology and biochemical studies at wholgaor levelto
molecular studies at organelle and intracellul@elleThe use of biochemistry, cellular
andmolecular biology, genomics, and proteomics ha®imecmoremportant to identify
the signaling complexes mediating cardioproteciigainst I/R injury. It is expected that
utilization of these technologies will bring a leetunderstanding of the progression of
the disease and enable the researchers to devedop effective interventions for

ischemic heart disease.

1.2 Ischemic heart disease

1.2.1 Epidemiology

Ischemic heart disease, also called coronary lkesease, is the leading cause of death in
western society, claiming hundreds of thousands/e$ each year. In the United States,
for instance, some 8,700,000 men and 7,300,000 ware living with ischemic heart
disease (American Heart Association, 2008). Evexgryan estimated 920,000 people
suffer a new or recurrent coronary attack, and aB8&o of them die as a result of the
attack (American Heart Association, 2008). In tleveloping countries, the death rate
from ischemic heart disease is third to AIDS angdobrespiratory infections (CGIRS,
2006). The World health organization (WHO) preditttat ischemic heart disease will
cause 11.1 million deaths globally in 2020, becagmine top killer of humans in the

whole world (World Health Organization web sieyw.who.int/ncd/cvd).

1.2.2 Risk factors
Atherosclerosis is a major cause of ischemic heligsease. The risk factors for

atherosclerosis are generally those for ischemarthaéisease. Extensive clinical and



statistical studies have identified several factiwat significantly increase the risk of
coronary heart disease (American Heart Associationveb site,

http://www.americanheart.or g/presenter.jhtml ?identifier=4726). Some of the factors

cannot be changed, including older age, male germdee and heredity, while many
others are modifiable, like tobacco smoke, higho@llaholesterol, high blood pressure,
physical inactivity, obesity and diabetes mellitaks,of which can be treated or controlled

either by changing lifestyle or taking medicine.

1.2.3 Pathology

Myocardial infarction (MI) is a common presentatioh ischemic heart disease. A
myocardial infarction occurs when an atherosclerptaque that slowly builds up in the
lumen of a coronary artery suddenly ruptures andks the blood flow downstream. The
formation of atherosclerotic plague is a chronitaimmatory response in the walls of
arteries, in large part due to the accumulationvbite blood cells and low density
lipoproteins (LDL, the proteins carrying cholesteand triglycerides). When LDL gets
through an artery, oxygen free radicals react witnd form oxidized-LDL, which then
attracts macrophages and T-lymphocytes. After thsée blood cells take up large
amounts of cholesterol, they are called foam ceéllisen foam cells die, their contents are
released, which attracts more macrophages andesraat extracellular lipid core in the
inner surface of atherosclerotic plaque. Conversbly outer, older portions of the plaque
become calcified and stiffer over time. After deesf progression, these plagues may
rupture, activate the blood clotting system and leethe formation of a thrombus, which
obstructs blood flow acutely. Upon the obstructidaywnstream myocardium is starved

of oxygen and nutrients, where myocardial infamtaevelops. Most individuals with



coronary heart disease show no evidence of narranedy for decades until the disease
progresses to the advanced state when the firgbteym often a "sudden” heart attack,

finally arise (American Heart Association, 2008).

The myocardium can tolerate brief periods (up tonfibButes)of severe myocardial
ischemia without resultingardiomyocyte death (Buja, 1998). If impaired bloibaiv
lasts more than 20-30 minutes, it will usually iati¢ irreversible cell injury (infarction).
With increasing duration of ischemggeater cardiomyocyte damage could develop upon
a re-established blood flow to the blocked heagaatermed reperfusion injury (Yellon
and Baxter, 2000). The intracellular events of éula and reperfusion injury will be

discussed in detailed in the session 1.2.6 “Mydehrschemia and reperfusion injury”.

1.2.4 Clinical features and diagnosis

The diagnosis of cardiac ischemia is usually madéntegrating the symptoms and the
results from physical examinations with biomarkedgctrocardiography (ECG) or other
imaging techniques (Antman et al., 2004). Chest jp@ithe most common symptom of
acute myocardial infarction and is often descriaed sensation of tightness, pressure, or

squeezing. Chest pain due to ischemia of the haastle is termed angina pectoris.

Cardiac biomarkers are proteins released into thedstream from the damaged
myocytes, such as myoglobin, cardiac troponin T Bncteatine kinase (CK), lactate
dehydrogenase (LDH) and so on. Myocardial necroars be recognized when blood
levels of specific biomarkers are increased. Digpronal elevation of the MB subtype
of the enzyme CK was found very specific for myaltalr injury. Elevated troponins in
the setting of chest pain may also indicate a hikglihood of a myocardial infarction

(Aviles et al., 2002).



Electrocardiography plays an important role in tliegnosis of patients with
suspected myocardial infarction (Thygesen et &Q72. The acute or evolving changes
in the ST-T waveforms and the Q-waves allow theician to date the event, suggest the
infarct-related artery and estimate the amount gbcardium at risk. The earliest
manifestations of myocardial ischemia are typicatdves and ST segment changes. As
the myocardial infarction evolves, there may besloER wave height and development

of pathological Q waves.

Non-invasive imaging is also useful in diagnosisl @haracterization of myocardial
infarction with the ability to detect wall abnories (Thygesen et al., 2007). Commonly
used imaging techniques in acute and chronic ititarcare echocardiography,
radionuclide  ventriculography and magnetic resoeancimaging (MRI).
Echocardiography is an excellent real-time imagtaghnique with strength in the
assessment of wall thickness, thickening and mattaest. Radionuclide imaging allows
viable myocytes to be visualized directly, presemtihe only commonly available direct
method of assessing viability. Cardiovascular MRIwell-validated standard for the
assessment of myocardial function with high spatsolution and moderate temporal

resolution. It is, however, more cumbersome ansl ls&d in an acute setting.

1.2.5 Complications

Life-threatening complications may occur immediatilllowing the heart attack. These
include pulmonary congestion, ventricular rupturatrrhythmia, pericarditis and
cardiogenic shock (Antman et al., 2004). A chrommodeling progress may also start

from the injured site and ultimately leads to héaittire.



1.2.6 Myocardial ischemia and reperfusion (I/R) injiry

1.2.6.1 Cellular injury

Intensive investigation over decades has providedetiled understanding of the
complexity of the response of myocardium to anesaic insult. Myocardial ischemia
results in a characteristic pattern of metabolid aftrastructural changes that lead to
irreversible injury. Upon the interruption of oxygen supply, mitochoatlroxidative
phosphorylation rapidly stops, resulting loss a thajor source of ATP production for
energy metabolism. A compensatory increase in abaeglycolysis for ATP production
leads to the accumulation of hydrogen ions andatac{Buja, 2005). The resultant
intracellular acidosis causes alterations in i@amgport in the sarcolemma and organellar
membranes (Buja et al., 1988) (Thandroyen et 8B2) Initially, there is increased K
efflux related to an increased osmotic load duéheoaccumulation of metabolites and
inorganic phosphate. With a substantial declinaTi, the N&, K*-ATPase is inhibited,
resulting in a further decline of 'Kand an increase in Nalntracellular acidosis also
activates the sarcolemmal N&f" antiport (Yellon and Baxter, 2000; Karmazyn, 1999)
which facilitates proton extrusion in exchange ka'. The accumulated Nan turn
activates N&-C&* exchanger which extrudes Nand brings in C&. The resultant
cytosolic loading of C& not only induces sustained impairment on contmdtihction,
but also mediates the damage on cell membrane hwiads to the progression of the

injury to an advanced stage (Buja, 1991).

The increase in cytosolic €aactivates Ca—dependent protease and phospholipase
which degrades phospholipid and releases lysoplotispds and free fatty acids.

Peroxidative stress continuously mounts with acdatran of toxic oxygen species and



free radicals generated from myocytes, endothal@ls, and activated leukocytes,
inducing further damage to the membrane phosplablipictivated proteases cleave
cytoskeletal filaments, which disrupts the celludaaffolds. These changes collectively

lead to a loss of membrane integrity and terminaddlynolish the cell structure.

1.2.6.2 Necrosis and apoptosis of cardiac cells

Necrosis and apoptosis represents the two fundaintmims of cell death: cell injury
with swelling, known as necrosis, and cell injunithwshrinkage, known as apoptosis
(Majno and Joris, 1995). Necrosis occurs when @lsexposed to extreme stumili like
ischemia and ends with total cell lysis. Due to fhlasma membrane breakdown,
cytoplasmic contents including lysosomal enzymes rateased into the extracellular
environment. Therefore, necrotic cell death is rofeessociated with massive tissue
damage and an intense inflammatory response. Apigptim contrast, can occur under
physiological or pathological conditions. Cells engbing apoptosis feature partition of
cytoplasm and nucleus into membrane bound-ves(elesptotic bodies) which contain
ribosomes, morphologically intact mitochondria amdiclear material. Thus, no
inflammatory response is elicited vivo due to efficient removal of apoptotic bodies by

macrophages or adjacent epithelial cells.

Extensive investigation has pointed to necrosishaschief form of cardiomyocyte
death during ischemic injury. However, more regend role of apoptosis has been
identified in many forms of cardiac pathology, imting myocardial ischemia (Buja and
Entman, 1998). The rate and magnitude of ATP depledre determinants of whether
cell injury progresses by apoptosis or necrosisabse apoptosis is an ATP-dependent

process (Buja, 2005). Generally, in the centraliorgof the infarct, necrosis



predominates, while in the peripheral areas thera mix of necrosis and apoptosis.
Despite little acute cell death in the remote myditan, increasing levels of both forms
of cell death are noted during the late phases (MaB008). As the severity of ischemia
declines and reperfusion supervenes, the quantumeafsis decreases, while that of

apoptosis increases (Anversa et al., 1998).

1.2.6.3 Reperfusion injury

Reintroduction of coronary flow to the infractedearis necessary to resuscitate the
ischemic myocardium and limit the extent of myocalrdecrosis. However, the effects
of reperfusion are complex and may include someteabus consequences collectively
referred to as reperfusion injury (Yellon and Baxt000). This reperfusion injury is
manifested by myocardial stunning, microvasculasfalyction and expedition of cell
death in certain critically injured myocytes. Thajor mediators of reperfusion injury are
free oxygen radicals, overloaded calcium, and oelits (Carden and Granger, 2000;
Granger, 1999; Park and Lucchesi, 1999). The oxygditals are generated by injured
myocytes and endothelial cells, as well as neutl®pctivated on reperfusion. Free
radicals exacerbate membrane damage and stimuésecanstriction, which, when
severe enough, cause a “no-flow” phenomenon. Imagaiintracellular calcium
homeostasis also plays an important role in theerfapion injury. The overloaded
calcium induces maximum contraction of the myofsbtipon reperfusion, resulting in a
disruptive type of necrosis, termed contractioncdbarcrosis (Verma et al.,, 2002). An
increase in mitochondrial [&3 triggers the opening of mitochondrial permeaypilit
transition pore (MPTP) and leads to the releasgytoichrome C and other proapoptotic

factors that initiates the apoptotic cascade (Hi@pset al., 2004). Reperfusion is also a



potent stimulus for neutrophil activatiand accumulation, which in turn serve as potent
stimuli for reactive oxygen species production. The neutropadsumulate in the
microcirculation, release inflammatory mediators)d acontribute to microvascular

obstruction and the no-reflow phenomenon.

1.3 Interventions for cardiac ischemia

The search for approaches to protect the heamstgachemia during coronary occlusion
has been going on for half a century in both chhisettings and basic research. In the
current session, we will describe these approadims the earliest efforts to limit

myocardial infarct size to the cutting edge of stagth therapy.

1.3.1 Clinical Treatment

1.3.1.1 First line

Myocardial infarction is a medical emergency whadgmands immediate attention and
activation of the emergency medical services. ORrygaspirin (antiplatelet drug),
glyceryl trinitrate (prodrug of NO) and morphinenédgesia), hence the popular MONA
(morphine, oxygen, nitro, aspirin), are the firshel drugs recommended to be
administered as soon as the symptoms occur (Anghah, 2004). Once diagnosed as
myocardial infarction, the patient is often givether pharmacologic agents, including
beta blockers, anticoagulation (typically with hepga and possibly additional
antiplatelet agents such as clopidogrel (Antmaal.et2004). These agents are typically
not started until the patient is evaluated by arrgency room physician or under the

direction of a cardiologist.

1.3.1.2 Reperfusion therapy



10

The ultimate goal of the management in the acutes@tof myocardial infarction is to
salvage as much myocardium as possible and prefeetiter infarction. Timely
reperfusion of coronary flow facilitateardiomyocyte salvage and decreases cardiac cell
death. Modalities for reperfusion include thromlsidy percutaneous coronary

intervention (PCI) and coronaaytery bypass grafting (CABG).

Thrombolytic therapy achieves reperfusion by lygimg thrombi in the infarct artery.
The effectiveness of thrombolytic therapy is detasd by the timing of administration
of thrombolytic agents. The best results are alvadgerved when the thrombolytic agent
is used within two hours of the onset of symptoBsefsma et al., 1996). After 12 hours,
associated risks like intracranial or systemic tileg outweigh any benefit (Late, 1993).
An ideal thrombolytic drug would lead to rapid refpsion, have a high sustained
patency rate, be specific for recent thrombi, mleand rapidly administered, and create
a low risk for intra-cerebral and systemic bleed{wghite and Van de Werf, 1993).
Currently available thrombolytic agents are striptase, urokinase, and alteplase

(recombinant tissue plasminogen activator).

Percutaneous coronary intervention (PCI), comm&nlywn as coronary angioplasty
or simply angioplasty, is a surgical procedureraat the blocked coronary arteries by
inflating a balloon within the artery to crush tihierombus. The procedure involves
performing a coronary angiogram to determine theation of the blocked vessel,
followed by balloon angioplasty to compress thegpi& and implantation of stents to
prop the vessel open. The benefit of a prompt dypperformed PCI over thrombolytic

therapy has been well established (Keeley et D32 Grines et al., 1993However,
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logistic and economic obstacles seem to hinder ee madespread application of PCI

(Boersma et al., 2006).

Coronary artery bypass graft surgery is anotheromamt approach to improve the
blood supply to the blocked myocardium. During thegery, an artery or vein from
elsewhere in the patient’'s body is grafted to theowcary artery to bypass narrowings or
occlusions. Several arteries and veins can be usadever the left internal thoracic
artery, usually grafted to the left anterior destieg coronary artery (LAD), have been
demonstrated to last longer than great saphenous gmafts (Raja et al., 2004).
Emergency CABG is less common than PCI for thetrmeat of an acute myocardial
infarction. However, in patients with two or moreranary arteries affected, bypass

surgery is superior to PCI in terms of long-termvaal rates (Hannan et al., 2005).

Because irreversible injury occurs within 2—4 hoofsthe infarction, there is a
limited time window for reperfusion to produce bgcial results. If attempts to restore
the blood flow are initiated after a critical peti@f only a few hours, the result is
reperfusion injury instead of amelioration (Fax2@05). Moreover, reperfusion is unable
to reverse the developed tissue damage. The lodiooayocytes will be replaced by a
collagen scar that is not contractible and perméyempairs the pump function.
Accordingly, intense interest has been directekhtestigate the application of stem cell
on the repair of heart damage. The present codirgesopioneering work will be briefly

reviewed in the following session.

1.3.1.3 Stem cell therapy under investigation
It is traditionally hold that the heart muscle ltseas no housekeeping mechanism to

repair any minor damage, given that the number ydaytes undergoing proliferation is
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too low if myocytes proliferation were to act asedfective repair mechanism. Stem cell,
with its ability to self-renew and to form any fyddifferentiated cell of the body,
provides the possibility of repairing end organ dge particularly the heart that has

undergone myocardial infarction.

Several studies have suggested that bone marrawedgrrogenitor cells were able
to repair the hearts of animals after myocardiplrin (Tomita et al., 1999; Toma et al.,
2002; Orlic et al., 2001). In one report, bone-marderived cells were injected directly
into the heart of the mouse after myocardial intfarcwas induced (Orlic et al., 2001).
Newly formed myocardium composed of proliferatingaoytes and vascular structures
was found to occupy 68% of the infarcted portion tbé ventricle 9 days after
transplanting the bone marrow cells. Using immuwmmiscence techniques the
investigators showed that these primitive bone-avewderived cells had undergone a
process of differentiation that led them to expressious markers specific to
cardiomyocytes. This is supported by several otfarks suggesting that adult stem cells,
in particular those derived from bone marrow, weapable of targeting the site of
myocardial injury as well as undergoing differetita into cardiomyocytes (Jackson et

al., 2001, Beltrami et al., 2003).

These initial findings in animal models have proetpa series of clinical studies in
human beings. Several groups have independentlgrtegp improvement in cardiac
function in patients treated with stem cells detifeom their own bone marrow after a
myocardial infarction (Assmus et at., 2002; Straateal., 2002; Wollert et al., 2004). The
delivery route of progenitor cells included intraemoary, percutaneous intramyocardial

and direct intramyocardial at the time of coronartery bypass graft. Importantly, most
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of these studies reported few side-effects. Howewefailure to explain the action
mechanism underlying the improvement in cardiaccfion has provoked concerns.
Moreover, these trials so far have not been dobltet randomized. Further definitive
clinical studies are essentially necessary, eslhecandomized controlled trials (Mathur
and Martin, 2004). The benefit of this novel apptoatill needs to be confirmed and

optimized before it can be applied to treatinggras with ischemic heart disease.

1.3.2 Ischemic Preconditioning (IP)

With exception of reperfusion therapy, most eatlgrapts to salvage the myocardium
during acute myocardial infarction have failed tedtly reduce infarct size (Przyklenk
and Kloner, 1998). The firshdication that the heart can adapt itself aftqvesded
ischemicstress was demonstrated in porcine myocardium, evlestaterelease in a
subsequent ischemia/reperfusion (I/R) episode vwgsfisantly lowercompared with
lactate release in the first episode of (WRrdouw et al., 1979). In 1986 Murry and his
colleagues published a landmarkicle in which they documented that foepetitive 5-
min of regional ischemia induced an extrenpayverful protection against a subsequent
lethal ischemian anesthetized dogs. Infarct size was limited 5&620f that seen in the
control group after 40 min of sustained ischemiaify et al.,1986). The investigators
named this cardiac warm-up phenomenon as "ischeprgconditioning™ (IP).
Subsequently, numerous studies using various mdeeds, liver, kidney, brain, and
endothelial cells) showed that short period(s)sohemia or anoxia could allow tissues to
survive subsequent ischemia that would have otlserlveen lethal (Sanada and kitakaze,
2004). Understanding this natural protection hasesbecome one of the major targets in

search for preventions against ischemic damages.
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While initial studies demonstrated that ischemiecpnditioning could protect the
heart against sustained ischemia that occurred afien preconditioning, Kuzuya et al.
(Kuzuya et al., 1993) and Marber et al. (Marbealet 1993) independently reported in
1993 that the cardioprotective effect of ischenmecpnditioning was still detectable 24
hours after preconditioning. Kuzuya’s group (Kuzuwtaal., 1993)lso found that the
infarct-limiting effect of preconditioning was losetween 3 and 12 hours after a brief
period of ischemia, which suggested that there whkve separate periods of
cardioprotection afforded by ischemic preconditnmni They named them the *first
window” and “second window’ respectively. Therét window of the protection, often
referred to as classical or early phase, develgp®aly as few minutes after the
preconditioning stimulugand lasts only 1-2 hours (Murry et d986). The second
window, also known as the late or delayed phaseeldps more slowlyl2—-24 hours
after the preconditioning stimulus, but lasis3—4 days (Kuzuya et al., 1993) (Marber et
al., 1993). The mechanisms tifese two phases are different. The first phase of
protectionis initiated by posttranslational modifications pfoteinsthat are already
present, whereas the second phase is medgtsginthesis ofle novo proteins (Bolli,
2000); The early phase depends on reactions tuatr wery rapidly, such as activation
of ion channels or phosphorylation of enzymes, whetthe late phase involves processes
that take far longer to occur such as modulatiothefgenes regulating channel proteins,
receptor, enzymes, molecular chaperon proteinspmune factors (Sanada and kitakaze,
2004). However, these two types of cardioprotecs@em to share certain triggers,

mediators, and effectors despite differences irtitheng of participation in each cascade.
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1.3.2.1 Cellular mechanisms of the early phase d®|

1.3.2.1.1 Adenosine, bradykinin and opioids

In 1991, Liu et al. (Liu et al., 1991) first dis@red that stimulation of the;Goupled
adenosine Al receptor was necessary to triggemi@tection. They used a rabbit model
to show that administration of adenosine recepttaigonist, 8-psulfophenyl theophylline
(8-SPT), prior to sustained ischemia was able tolisthb the protective effect of IP.
Infusion of adenosine or Al-specific agonist repiced the protection afforded by IP.
Liu proposed that endogenous adenosine releasatydér results in the preconditioned
phenotype. Two other endogenously released trigglestances, bradykinin (Wall et al.,
1994) and opioids (Schultz et al., 1995), were sgbently found to be involved in IP
and appeared to work in parallel. Inhibition of amye of these three receptors blocked
IP’s protection from a single preconditioning cydiowever, the protection could again
be realized if the number of preconditioning cycless increased. This led Goto et al.
(Goto et al., 1995) to suggest that the three tecead an additive effect required to
reach a hypothetical protective threshold. Incraasbrief ischemia/reperfusion cycles
released more trigger substances so that two m@semiould eventually reach the

protective threshold even when the third one whibited.

1.3.2.1.2 Protein Kinase C (PKC)

The multiple trigger theory mentioned above reauiitieat all triggers converge on a
common target. In 1994, Ytrehus et al. (Ytrehualet1994)ound that inhibition of PKC
abolishes the protection induced by ischemic prditimming or by pretreatment with
adenosine. It was later discovered that the cardieption afforded by two other trigger

substances, bradykinin (Goto et al., 1995) andidpi@Miki et al., 1998), could also be
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blocked by PKC inhibitors. These results suggest BKC is a strong candidate for the

common target and plays a pivotal role in the tRigdioprotection.

The PKC family consists of 12 closely related Sex/Kinases, classified into three
distinctive subfamilies. Classical PKCs (cPKC) u# PKCa, B1, B2 andy isoforms, and
require both C& and lipids (i.e. phosphatidylserine, PMA and/aayiglycerol) for their
activation. Novel PKC isoforms (nPKC), which incudKC39, ¢, n, 6 andp, are not
sensitive to calcium, but still require lipids fitreir activation. The subfamily of atypical
PKC isoforms, PKQ and2, are not activated by &a diacylglycerol or PMA and their
regulation is more complicated. The number andl¢evé PKC isozyme expression
varies in different tissues and species and chamgts developmental stage of the

animal.

Early studies on the role of PKC in ischemic prettoning mainly relied on the
pharmacological manipulation with PKC inhibitorsdastimulators. In amn vivo study
performed by Speechly-Dick and colleagues (Speebidix et al., 1994), the PKC
inhibitor chelerythrine, administered after a pmditioning stimulus, abolished
protection conferred by IP, and caused an increasdarct size. In the same study, PKC
stimulator 1,2-dioctanoydn-glycerol, administered prior to sustained ischemia

significantly reduced infarct size.

A large body of data supporting the PKC hypothésis been obtained in the isolated
rat heart subjected to sustained global ischemidckMdl et al., 1995; Hu and Nattel,
1995). In this model, functional recovery duringpegusion is typically chosen as the
index of damage caused by sustained ischemia,caenbtuate the protective effect of IP.

For example, Mitchell et al. showed that precownditng with brief episode of I/R
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significantly increased functional recovery at 4thrafter relief of a 20 min period of
global ischemia (Mitchell et al., 1995). The PKChilmtors chelerythrine and
staurosporine abolished this protective effect, levithe diacylglycerol analogue 1-
stearoyl-2-arachidonoyl glycerol mimicked the bdsebf ischemic preconditioning.
Moreover, immunoblotting for PKC isoforms showedtttwo major isoforms in rat heart,
PKCS and PKG, both translocated during brief episodes of tremsischemia from

cytosol into membrane and nuclear compartments.

The role of PKC in ischemic preconditioning hasrbeealuated in a diverse array of
models, species and protocols. Most of the resudt® obtained using pharmacological
approach, i.e. by administering PKC inhibitors @nddctivators. Unfortunately, these
inhibitors or activators are isoform-nonspecifidyigh makes it difficult to single out the
isoforms that are responsible for the IP cardigamdn. Immunoblotting represents an
alternative to pharmacological and biochemical mésh By assessing subcellular
distribution of PKC isoforms, the involvement ofjeven isoform can be determined. A
better solution is to develop isoform-specific itors and activators. In a study
conducted by Gray et al., isoform-specific inhimitiof PKG has been successfully
employed. In a cell culture model of hypoxic preditioning, they found that specific
inhibitor of PKCG (i.e. e-VI-2 peptide) abolished the protection induced tbypoxic
preconditioning and phorbol ester (Gray et al., 7099 his isoform specific modification
allows researchers to identify the particular isof® that are necessary for the

cardioprotection to occur.

1.3.2.1.3 ATP-sensitive-potassium channel gp)
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Investigation of Krp channels has a longer history than studies onemsah
preconditioning. In 1983, Noma (Noma, 198@kt reported the existence of these
channels in the myocardium. The cardiagrd&channel is composed of four Kir6.2
subunits (inwardly rectifying potassiurhannel) and four SUR2A subunits (sulfonylurea
receptor) and is modulated by fMagnd ATP (Snyders, 1999). Opening of the surface or
sarcolemmal Krp channel (sarcolgp) was proposed to produce cardioprotection via
shortening of phase 3 repolarization of the carcaaton potential and membrane
hyperpolarization, both of which would lead to redd calcium overload during
ischemia/reperfusion and a preservation of ATP (Worh983). These phenomena
resemble the acute cardiac responses and cardiopoot afforded by ischemic
preconditioning. Indeed number of early studies have presented strordgeeéfor a
role for sarcokyp in mediating IP, with infarct sizeduction as the end point to describe
the cardioprotective effect. These inclutiese reported by Yao and Gross (Yao and
Gross, 1994) and Schulz et al. (Schulz et al., 1 989Aoshowed an association between
action potential shortening and IP, and the studiaruna et al. (Haruna et al., 1998),
who showed digoxin, an inhibitor of K&K ATPase, blocked the cardioprotective effect
of IP by indirectly desensitizing A&p channels. Another study using molecular
techniques shed some light on the role @f&Xin alleviating calcium overload during
ischemia. Jovanovic et gllovanovic et al., 1986) found that in&-deficientCOS-7
cells, marked calcium loading occurred when thesdis avere exposed to 3 minutefs
chemically-induced hypoxia. However, when they ao$fected the cells with both

subunits of thearcoksrp channel, SUR2A and Kir6.2, the addition of thgriKopener
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pinacidil attenuatethe calcium loading. Similaesults were obtained with pinacidil in

cardiac myocytes expressitigg native sarcoksp channel.

In 1991, Inoue et al. (Inoue e tal., 199aynd that not only the cell membrane but
also the inner mitochondrial membrane possesseds&nBitive inward rectifier activity,
and they suggested the existence of “mitochondial channels” (mitokrp). It is
thought that a beneficial effect may result fromi Entry through mitolkrp and
intramitochondrial depolarization. This effect wduleduce mitochondrial calcium
overload and cause moderate matrix swelling, wheelds to slowing of ATP synthesis
and accelerated mitochondrial respiration (Holmubdov et al., 1998). Moreover, the
reactive oxygen species (ROS), which are trangiegénerated by opening of the
mitoKatp channels, is able to activate downstream casceamie$ confer the
preconditioning effect (Pain et al., 2000). TheaNjtrp could thus be involved in acute

IP as either a trigger or an end effector, or both.

Thereatfter, the contribution of mitochondrial aracelemmal Krp channels to IP-
induced cardioprotection has been studied extelysivEhe effect that had been
considered to be related to sarcolemmakeKchannels, were found to be actually
mediated by mitochondrial &p channels (Liu et al., 1999). However, some corgern
have been raised over those studies on the rameitoKatp channels in IP. Firstly, the
structure of mitokyp is still largely unknown. It is now thought thattoK arp might not
include the Kir 6.1 or Kir 6.2 subunits, which azemmon to sarcolemmal and other
Karp channels (Suzuki et al., 2002). Secondly, the otdgl drugs available to
pharmacologically modulate mitale channels (diazoxide as an opener and 5-

hydroxydecanoate [5-HD] as an inhibitor) also hdirect effects on cellular respiratory
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metabolism (Dzeja et al., 2003; Hanley et al., 2008irdly, some recent studies using
big animal models have failed to show complete ntatchn of the cardioprotective effect
of ischemic preconditioning by these two drugs énet al., 2001a; Schwartz et al.,

2002).

It is not clear why these discrepancies exist, dmumhe investigators have suggested
that opening of sarcolemmale channels may be more important in the beatingthear
to limit stunning, while inn vitro experimental conditions opening of mitgl appears
to limit cell death (Gross and Peart, 2003). Thauaccardioprotective role of these

channels still needs to be investigated further.

1.3.2.1.4 The mitogen-activated protein kinase (MAR)

Mitogen-activated protein kinase (MAPK) are serihezonine protein kinases that are
activated by diverse stimuli ranging from cytokingsowth factors, neurotransmitters,
hormones, cellular stress, and cell adherence. Thegtion in a three-tier module

comprising of a MAPK kinase kinase, a MAPK kinasel @ MAPK. The mammalian

MAPK can be subdivided into five families: 42 anttkDa extracellular signal-regulated
kinase (Erkl1/2), p38, the c-Jun NERerminal kinase (JNK), Erk 3/4 and Erk 5

(Widmann et al., 1999).

The role of Erk1l/2 as a potential mediator of I leen controversial, with the
majority of studies supporting its role in the IR&rdioprotection (Hausenloy and Yellon,
2006). In response to preconditioning stimulus,1Ekwas found to redistributes to the
nucleus, intercalated discs, cytosol and mitochanderk1l/2 can phosphorylate and

inhibit GSK-3 (Eldar-Finkelman et al., 1995), the consequenc&toth is inhibition of
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mPTP in different settings of cardioprotection @s#ova et al., 2004). Thus it is worthy

to investigate whether Erk1/2 mediates IP’s canditgztion by inhibiting mPTP opening.

Weinbrenner et al. (Weinbrenner et al., 19@&)ye the first to report that IP caused
p38MAPK activation during ischemia in preconditidneabbit heart. However,
p38MAPK was not activated during ischemia in thatoa group. Contradictory results
were obtained in 1999 by in vivo (Ma et al., 198@)din vitro (Mackay and Mochly-
Rosen, 1999) studies suggesting that p38MAPK aaivacould promote ischemic
damage. Interestingly, in the latter study, prokxhgschemia was found to induce
biphasic activation of p38MAPK in rat cardiomyocgitevith a transient peak occurring
within minutes and followed by a sustained actmatafter 2h (Mackay and Mochly-
Rosen, 1999). Another study performed by Sanadzated that IP caused a transient but
strong activation of p38MAPK. Treatment with SB 288, a selective p38MAPK
inhibitor, during IP blunted the infarct size-linm¢ effect of IP, while, conversely, the
presence of the inhibitor during sustained ischepaidially mimicked the protection of
IP (Sanada et al., 2001b). This observation ledth®® hypothesis that p38MAPK
activation has opposing effects; that is, transaativation during IP prevents ischemic

injury, while continuous activation during sustalnschemia exacerbates it.

1.3.2.1.5 Phosphoinositide 3 kinase (P13-K) and Akt

PI13-K, the kinase phosphorylating the plasma men®igid phosphatidyl-inositol-4,5-
bisphosphate to phosphatidyl-inositol-3,4,5-trigtuste, is implicated in a diverse group
of cell functions, including cell growth, cell défentiation, cell survival and intracellular
trafficking. Many of these functions are relatedttoability to activate Protein Kinase B

(PKB, also called Akt) (Cantley, 2002).
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In 2000, Tong et al. (Tong et al., 2000) first dexstoated that IP protects the heart by
activating the PI3K-Akt pathway and were later saupgd by several other studies
(Mocanu et al., 2002; Yamaura et al., 2003). Irtlohiof P13-K was shown to attenuate
IP’s cardioprotective effect and also block the ggtwrylation of Akt following IP. Akt
is known to be able to activate anti-apoptotic paiys (Hausenloy and Yellon, 2004). A
recent study by Davidson et al. demonstrated thiat-expressing Akt protected cells

against oxidative stress by inhibiting mPTP oper{Dgvidson et al., 2006).

1.3.2.2 Cellular mechanisms of the late phase of IP
The late phase of ischemic preconditioning providesnore prolonged cardioprotection
than the early phase (48-72 hours versus 2 to Bjouhich gives rise to the notion that

the late phase may ultimately have greater clinisafulness.

1.3.2.2.1 Adenosine

The concept that adenosine released during thé iscbemia stimulus triggers the
development of delayed protection was first propdsg Baxter et al. (Baxter et al., 1994)
and subsequently expanded by the same group (BamtkiYellon, 1997a; Dana et al.,
1998) and others (Auchampach et al., 1999; Takaab,e1999). Activation of adenosine
receptors has been reported to provide delayedegiroh only against myocardial
infarction but not against myocardial stunning ahgthmias (Maldonado et al., 1997,
Auchampach et al., 1999). And such delayed prateatan be triggered by activation of
either adenosine Al or A3 receptors (Auchampachl.et1999; Takano et al., 1999).
However, it is not clear whether only one or bofith®se adenosine receptor subtypes

contributes to triggering delayed IP, because 8f@shenyl theophylline, the only
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adenosine receptor antagonist shown to block theldement of late IP (Baxter et al.,
1994), is not selective between Al and A3 receptdisdies have shown that selective
stimulation of adenosine Al receptors activates8BK-HSP27 pathway via a PKC-
dependent mechanism (Dana et al., 2000b) and sesethe synthesis of manganese
superoxide dismutase (Mn—SOD) (Dana et al., 2000hije the role of A3 receptors is

yet to be established.

1.3.2.2.2 Reactive Oxygen Species (ROS)

ROS includes oxygen ions, free radicals, and pdesxi They are highly reactive due to
the presence of unpaired valence shell electrorsleVé large burst of ROS results in
cell damage, moderate release of ROS can act ataan to warn the myocardium to
switch to a defensive phenotype. An obligatorerof ROS in the delayed protection
induced by IP was first discovered by Sun et alin(8t al., 1996). These investigators
demonstrated in conscious pigs that the administraif a combination of antioxidants
(superoxide dismutase [SOD] plus catalase plus apéopropionyl glycine [MPG])
during the initial ischemic challenge preventeddbeelopment of late protection against
stunning. MPG has also been found to prevent ttee peotection against infarction,
arrhythmias (Yamashita et al., 1998), and cororemglothelial injury (Kaeffer et al.,
1997). In contrast, intracoronary infusion of an&R@enerating solution in rabbits elicits
a late IP-like response (Takano et al., 1997). @lieslings provided strong evidence that
sublethal oxidative stress is essential to initihe protection observed in the late phase

of IP.

1.3.2.2.3 Nitric Oxide (NO)
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Nitric oxide (NO) is an endogenous vessel relaxiduait was initially identified as

endothelium-derived relaxation factor (EDRF). ltgenerated from the amino acid L-
arginine by various nitric oxide synthase (NOS)efghare 3 forms of NOS: endothelial
(eNOS), neuronal (nNOS), and inducible (INOS), eatth separate functions. The two

isotypes present in the cardiovascular systemM@Seand iNOS.

The first indication that NO triggers late IP wasoyded by a study in which
administration of N"-nitro-L-arginine (L-NA), a nonselective inhibitoof all NOS
isoforms, before preconditioning stimulus blockkd tlevelopment of delayed protection
against myocardial stunning (Bolli et al., 1997&)subsequent study demonstrated that
NO is also necessary to trigger delayed proteciganst myocardial infarction (Qiu et
al., 1997). Importantly, exposure to exogenous NOsiufficient to reproduce late
protection against both myocardial stunning andretfon that is observed during the late

phase of IP (Takano et al., 1998b).

NO plays a dual role in the genesis of late camditgztion of IP, acting initially as a
trigger and subsequently as a mediator. Immediaiiééy preconditioning stimulus, there
is an increase in eNOS activity in the myocardikogn et al., 2000). The enhanced
biosynthesis of NO by eNOS is important to trigglee development of the delayed
cardioprotection, which can be abrogated by noeeteke NOS inhibitor but not by
relatively selective inhibitors of INOS applied bef the preconditioning stimulus (Bolli
et al., 1997b). However, 24 hours after the bviefstimulus, INOS seems to take over
and mediate the late protection. Evidence was pirstided by two studies in conscious
rabbits, in which the delayed protection againghbmyocardial stunning (Bolli et al.,

1997b) and infarction (Takano et al., 1998a) wasogdted by administration of
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relatively selective INOS inhibitors 24h after poeditioning, just before the lethal

ischemia. Guo et al. (Guo et al.,, 1999) later destrated that the late phase of IP is
associated with upregulation of myocardial INOS dvdas eNOS remains unchanged)
and that targeted disruption of thHOS gene eliminated the delayed infarct-sparing
effect. Taken together, the two isoforms of NOS sequentially involved the late phase
of IP, with eNOS generating the NO that initiatihg development of IP response on day
1 and iNOS generating the NO that protects agaewirrent ischemia on day 2 (Bolli,

2000).

1.3.2.2.4 PKC

In 1995, Baxter first demonstrated the essential 6 PKC in the late phase of IP with a
study in which the delayed infarct-sparing effeofsIP in rabbits were abrogated by
pretreatment with the PKC inhibitor chelerythrinBagter et al., 1995). Conversely,
administration of the PKC activator dioctanagplglycerol induced cardioprotection 24
hours later (Baxter et al., 1997b). Subsequentiesuctvealed that IP caused selective
translocation of PKE€and PKG, but did not affect the other 8 isoforms expredgeitie
rabbit heart and did not significantly change t&KIC activity (Ping et al., 1999b). In the
same model, pretreatment with the PKC inhibitor lefythrine at doses that have
previously been shown to block IP’s protection kledt the translocaiton of PKGPing

et al., 1999b), whereas the same inhibitor at éolDlower dose shown to only block the
translocation of PK@ failed to abrogate the late protection of IP (@iwl., 1998). These
findings suggest that activation of PKC after isole preconditioning is isoform
selective and seems to be the specific PKC isozyme responsibléhé development of

delayed protection in this setting. The IP-induaadivation of PKE is likely to be
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caused by the generation of NO during the initsghemic stress according to Ping’s
study, where they found that such activation waxke#d by pretreatment with L-NA
(Ping et al., 1999a). In the same study, they alsserved that administration of NO
donors in the absence of ischemia induced a seteatitivation of PKE to an extent
comparable to that induced by IP, while coadmiatgin of chelerythrine blocks both the
activation of PKE and the delayed protection elicited by the NO dsn@ing et al.,

1999a).

Other Preconditioning studies have implicated RK®KC-, and PKCe in the rat
heart (Yoshida et al., 1997), and PK&-in the dog heart (Kitakaze et al., 1997).
Interestingly, in an isolated rat heart model, PK&ad PKCe are demonstrated to play
opposing roles in cardioprotection, with activatiohthe former being detrimental and
activation of the latter being protective (Inagekial., 2003). In another study using a
mouse model, transgenic expression of constitytigetivated PKE in the heart was
shown to be able to recapitulate both the signatéwgnts and the late protection of IP

(Ping et al., 2000).

1.3.2.2.5 Kyrp channel

Pharmacological studies have provided evidence timning of Kgp channels is
necessary for the delayed infarct-sparing effeatiiced by ischemic preconditioning
(Bernardo et al.,, 1999; Takano et al., 2000), asimeoAl and A3 receptor agonists
(Takano et al., 1999), and opioid receptor agor(iStger et al., 1999). These diverse
preconditioning stimuli converge om¥e channels, suggesting that the activity of these
channels may be a common distal effector of delgyedection against cell death.

However, the IP-induced late protection againstrstug does not appear to requirgrK
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channel activity (Takano et al., 1999). The différeole of Karp channels in late IP
against stunning versus against infarction proviegence that different mechanisms

underlie these two forms of cardioprotection.

Major issues that remain to be elucidated are tiemtity of the Krp channels
involved in the late phase of IP (i.e., sarcolemmatsus mitochondrial) and the
mechanism whereby their opening confers protecti®iven the limitations of the
available pharmacological tools, it has been suggethat molecular approaches such as
gene targeting and transgenesis will be requirecddbnitively assess the role of

mitochondrial versus sarcolemmal- channels (Bolli, 2000).

1.3.2.2.6 Transcription factors

Transcription factors govern the expression ofdaelioprotective genes responsible for
late IP. The first transcription-regulatory elemedéntified in the late IP signaling
mechanisms was nuclear factor-kB (NF-kB) (Xuanlgtl®99), which is known to be a
major modulator of INOS, COX-2, and aldose reduet@mgene expression. Using
conscious rabbits, Xuan and colleagues found #atnduced rapid activation of NF-kB.
Inhibition of NF-kB with diethyldithiocarbamate cqhetely abrogated the
cardioprotective effects observed 24 hours lateeyTfurther demonstrated that the IP-
induced activation of NF-kB was blocked by pretmeant with L-NA (NOS inhibitor),
MPG (antioxidant), chelerythrine, and LD-A (protéymosine kinase [PTK] inhibitor), all
given at doses previously shown to block late This finding indicates that the cellular
mechanism whereby IP activates NF-kB involves tirenaition of NO and ROS and the

subsequent activation of PKC and PTK-dependentaiignevents. Thus, NF-kB appears
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to be a common downstream pathway though whichipteilsignals elicited by ischemic

stress (NO, ROS, PKC, and PTKSs) act to induce g&peession in the heart.

1.3.2.2.7 Cyclooxygenase-2 (COX-2)

Cyclooxygenase (COX) is the rate-limiting enzyme prostaglandin (PG) synthesis,
catalyzing the conversion of arachidonic acid tdHR@mith et al., 1996). Two distinct
COX isoforms have been characterized so far: COXHich is present in most cells and
is responsible for constitutive prostanoid formatiand COX-2, which is inducible and

becomes abundant in activated macrophages andaateat sites of inflammation.

Induction of COX-2 was generally thought detriménitbowever, the role of COX-2
in cardiovascular system has been found to be Imadef Recent studies have
demonstrated that ischemic preconditioning uprdgaldhe expression and activity of
COX-2 in the heart 24h after preconditioning, candant with an increase in the
myocardial levels of PGE:6-keto-PGI, (the stable metabolite of Pgland (to a lesser
extent) PGE, (Shinmura et al., 2000). Administration of 2 uated COX-2-selective
inhibitors (NS-398 and celecoxib) 24 hours afteab®lishes the increase in prostanoids
and, at the same time, completely blocks the cprdtective effects of late IP against
both myocardial stunning and infarction. These oleéns identify COX-2 as a
cardioprotective protein and strongly point to B@Rd/or PGJ as the likely effectors of
COX-2—dependent protection. Subsequent studiehdyame group further addressed
the mechanism underlying the regulation of COX-2ByShinmura et al., 2002). Using
conscious rabbit model, they found that inductidnGDX-2 protein expression in

preconditioned myocardium requires PKC-, Src/LckKRTand NF«xB-dependent
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signaling. On the other hand, iINOS-derived NO wexguired for the activity of newly

synthesized COX-2 following IP.

1.3.2.2.8 Heat shock protein (HSP)

Heat shock proteins (HSP) are a group of highlyseoved proteins whose expression is
increased when the cells are exposed to elevategetratures or other stress. Each HSP
is named according to its molecular weights. Th&t bbharacterized HSPs, hsp90, hsp70
and hsp65, are induced in response to heat inrgiinisms studied from bacteria to

human.

In 1991, Knowlton et al. first reported the expressof HSP in rabbit after brief
ischemia challenge (Knowlton et al., 1991). Marbeal. confirmed this finding (Marber
et al., 1993) and further demonstrated in a latgaysthat there is a correlation between
the amount of hsp70 induced and the ability totlimiarct size (Marber et al., 1994).
This led to the hypothesis that the protectionat IIP is mediated by these chaperon
proteins. In 1995-1996, several groups succesgfelherated transgenic mice that over-
expressed hsp70 in the heart and other organs @viathal., 1995; Plumier et al., 1995;
Radford et al., 1996). In all cases, these group®able to demonstrate that such over-
expression of hsp70 protected the heart againbems@ damage using a variety of
endpoints such as infarct size, creatine kinasmasel, recovery of high energy phosphate

stores, and correction of metabolic acidosis.

Recently, another member of HSP, hsp27 has beayesiggl to participate in the late
protection of IP as a downstream target of p38MARIkano et al., 2000; Huot et al.,
1997; Hedges et al.,, 1999). The translocation @2Fsfrom cytosol to myofibril or

nucleus may prevent actin fragmentation (Huot gt1896) or microtubule degradation
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(Bluhm et al., 1998)On the other hand, hsp27 prevents the interactiohpaf-1 with
procaspase-9 through binding to cytochrome c (Garet al., 1999). Both of these

actions can ameliorate or delay ischemic cell death

1.3.3 Pharmacological preconditioning

Despite the powerful protection provided by ischenpreconditioning, the clinical
implement of this approach faces practical probleBecause brief ischemia challenge
must precede lethal ischemia to achieve cardiogtiotg induction of preconditioning
ischemia doesn't serve as a realistic therapetrtitegy for patients with ischemic heart
disease. However, if the signaling mechanisms UyidgrIP can be determined, more
simple and effective therapeutic intervention cardbveloped accordingly. Considerable
progress has been made to understand the signa@upanism and to identify the
substances that are capable of duplicating theiagatection induced by IP. These
substances can be divided into two categories:ralfjtuoccurring but often noxious
agents, e.g. endotoxin (Brown et al., 1989), ietgkin-1 (Brown et al., 1990), tumor
necrosis factor: (Brown et al., 1992), leukemia inhibitory factd¥dlson et al., 1995),
ROS (Sun et al., 1996), and clinically applicatitags including Krp channel opener
(Sato et al., 2000), NO releasing agents (Takanal.et1998b), adenosine receptor
agonists (Baxter et al., 1994), and opioid receptwnists (Fryer et al., 1999). Most of
these forms of preconditioning have been shown twtept against lethal
ischemia/reperfusion injury, and some have beenodstrated to protect against
reversible postischemic dysfunction (Sun et al.96)9and endothelial dysfunction
(Kaeffer et al., 1997). Further efforts should lrected to promote more clinical studies

based on the evidence from experimental studiegger animals.
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1.4 Hydrogen Sulfide (BS)

For many decades, B has been receiving attention as a toxic gas awmgoamental
hazard. Its physiological importance was not recaghuntil the recent finding that,B

occurs naturally in mammalians. This led to thecoh®ry of HS as the third
gasotransmitter after NO and CO. In the followimgtent, recent works on,B will be

reviewed with an emphasis on its biological effextd its roles in different diseases.

1.4.1 Physical and chemical properties of }$

Hydrogen sulfide (BBS) is a colorless, flammable and water soluble witis smell of
rotten eggs. The detectable level of this gas lmgdwuolfaction is 400 folds lower than its
toxic level. In an aqueous solution;$lis a weak acid which dissociates in the following
reaction: HS & H' + HS < 2H" + . According to the Henderson—Hasselbach
equation, it will form approximately 18.5%,8 and 81.5% hydrosulfide anion (HS) in a
physiological solution (pH 7.4, 37°C) (Dombkowski a&l., 2004). HS is a highly
lipophilic molecule, which enables it to freely pdrate cells of all types and become

biologically active.

1.4.2 Endogenous generation and metabolism o8

It is known that certain bacteria and archae cadyce HS. Recently, mammalian cells
have also been found to be able to generate anabolete HS. For example, the 43
concentration in rat serum was reported to be ata®uM (Zhao et al., 2001). A higher
level of S was detected in the brain and reported to be DM (Abe and Kimura,
1996). However, such remarkably high concentratioh HS have recently been

questioned by some reviews (Li and Moore, 2008;b8z£007) and a group of
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researchers (Whitfield et al., 2008) who failedditect HS at micromolar level in the

blood of a variety of animals. Indeed, the evaneisead reactive nature of this gas
makes it difficult to accurately measure its cornraion in an aqueous solution. A direct,
reliable and stable means of detection needs teleloped before a conclusion can be

drawn.

Despite the discrepancy on the exact concentratibreirculating sulfide, two
pyridoxal-5-phosphate-dependent enzymes have bdentified as the endogenous
synthases of §8, cystathioning-synthase (CBS) and cystathionipéyase (CSE). Both
of them use L-cysteine as the main substrate atidctigely are responsible for the
majority of S production in the body (Stipanuk and Beck, 198%kson et al., 1990;
Bukovska et al., 1994). The expression of CBS aB& Gas been detected in a board
variety of cell types, including those from livédidney, heart, brain, skin fibroblastes,
and lymphocytes (Wang, 2002). In some tissues, @B and CSE contribute to the
local generation of kB, whereas in others, one enzyme predominates. i€BBe
predominant KIS synthase in the brain and nervous system andjldyhexpressed in
liver and kidney, while CSE is primarily expressadhe heart, liver, vascular and non-

vascular muscles.

H,Sin vivo is metabolized by oxidation in mitochondria befaris excreted through
urine as free or conjugated sulfate (Beauchamp,et384). Nevertheless the mechanism
of the conversion of sulfide to sulfate or thioatef is poorly understood. The role of a
sulfide oxidase and/ or glutathione has been prxho#\ less important metabolic
pathway involves methylation of sulfide by cytosdimethyltransferase. It is worthy of

note that HS can also be scavenged by methemoglobin (Beauclearap, 1984) or
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metallo- or disulfide-containing molecules such @sdized glutathione (Smith and
Abbanat, 1966). Hemoglobin may act as a common ®nlkCO, NO and KS (Wang,
1998). It interacts with k6 by forming green sulfhemoglobin (Arp et al., 1p8Zaution
should be raised if this sink is saturated by onthe three gases; then its ability to bind

other gases would be reduced (Searcy and Lee, .1998)

1.4.3 Biological role of HS

1.4.3.1 BS and the central nervous system (CNS)

The presence of considerable amounts ¢& ldnd its synthase CBS in the brains of
several species including humans suggested aaokhié gas in CNS function (Kimura,
2002). BS has been shown to facilitate induction of hippogal long-term potentiation
by increasing the sensitivity of NMDA receptors ifiira, 2000). Interaction ofA3 and
NMDA receptors possibly involves cAMP-dependenttgio kinase pathway, since in
the same study NaHS increases cAMP levels in naliaord glial cell lines and primary
neuron cultures. In addition, ;H was also reported to induce protection against
glutamate-mediated toxicity in cortical neurons nfkira et al., 2006) and mouse
hippocampal cell line (Kimura and Kimura, 2004)rh@ps by multiple mechanisms
including activation of Krp and CI channels and elevation of intracellular glutatieion

(Kimura et al., 2006).

Deranged biosynthesis of,8l has been found to be associated with centrabosrv
system diseases, such as stroke (Qu et al., 2D0@)p syndrome (Kamoun et al., 2003),
and perhaps also Alzheimer's disease (Eto et@02)2In the rat model of stroke (Qu et
al., 2006), middle cerebral artery occlusion cawmeéhcrease in #5 levelin the lesioned

cortex as well as an increase in thgSHsynthesizingctivity. In keeping with this,
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administration of a sulfide donor significantly reased the infarct volume. In subjects
with Down syndrome, urinary thiosulfate (a metatsoliof HS) and erythrocyte

sulfhemoglobin levels were both significantly iresed compared with diet-matched
controls (Kamoun et al., 2003). Further studiesvaagranted to determine whether the

abnormity of HS level is a cause or simply a consequence of tissases.

1.4.3.2 HS and inflammation

Extensive studies have recently been conductedetmed the role of KS in various
inflammatory diseases. At micromolar concentrati¢S can induce an upregulation of
anti-inflammatory and cytoprotective genes inclgdimmem oxygenase-1 in pulmonary
smooth muscle celis vivo (Qingyou et al., 2004) and in macrophagesgtro (Oh et al.,
2006). HS also reduces LPS-stimulated Th@nd NO formation in cultured microglial
cells (Hu et al., 2006). In animal models of inflmation, administration of 4 donor
has been effective in reducing carrageenan-indpeed edema and air pouch-induced
leukocyte infiltration (Zanardo et al., 2006), tt@mmonly-used systems to test the anti-
inflammatory effects of experimental compounds. Tretective effect of k5 was
attenuated by pretreatment with glibenclamide, ssgtigg the involvement of Ap
channels. Several other studies demonstrated tmatically linking an HS-donor
species to known anti-inflammatory drugs can impralkie therapeutic profile of the
compound. Using a rat model of endotoxin-induceftaimmation, Li and colleagues
reported that a sulfide-releasing compound, S-tkalac, enhanced the anti-inflammatory
effect of the parent molecule and exhibited lesdrgatoxicity (Li et al., 2007). Similarly,
in the study by Distrutti et al., the,8-releasing derivative of mesalamine demonstrated

superior anti-inflammatory and antinociceptive edfty compared with the base
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mesalamine molecule in the model of postinflamnmatigpersensitivity (Distrutti et al.,

2006).

However, it is paradoxical that an upregulatiomp$-synthesizing activity or plasma
H.S level was observed in a large body of studiesgudifferent inflammation models.
These include carrageenan-induced paw oedemasnBaatia et al., 2005a), a mouse
model of pancreatitis (Bhatia et al., 2005b), radandel with endotoxic shock (Collin et
al., 2005; Li et al., 2005), and a polymicrobiapsis model in mice with cecal ligation
and puncture (Zhang et al., 2006). Pharmacologudabitor of H,S biosynthesis, DL-
propargylglycine (PAG) (Marcotte and Walsh, 1948as used in some of these studies
and shown to be able to attenuate the inflammatesponses. In a rat model of
endotoxemiaPAG prevented the increases in the serum levelsvef and pancreas
injury markers and reduced the tissue content aflaperoxidase (Collin et al., 2005). In
a model of cecal ligation and puncture, PAG treatmeduced tissue neutrophil
infiltration and improved liver and lung histolo@ghang et al., 2006). In a carrageenan-
induced inflammation model in the rat, PAG treattndose-dependently reduced paw

edema and neutrophils infiltration (Bhatia et 2005a).

Interestingly, both inhibitor and donor ob& were shown to exert beneficial effects
in the same experimental model of disease, foantd, in the carrageenan paw edema
model (Bhatia et al., 2005a; Zanardo et al., 2008)hile one study demonstrates anti-
inflammatory effects of k5 (Zanardo et al., 2006), another one argues f@roa
inflammatory role of HS in the same model (Bhatia et al., 2005a). A neasie
explanation for these conflicting results is thatl@genous sulfide at low and high local

concentrations exert opposing effects, with low aaoiration preventing and high
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concentration promoting inflammation. A similar @dox has been previously noted with
inhibitors versus donors of NO — both of them begffgctive in the carrageenan paw
edema models (Handy and Moore, 1998; Fernandek, 2082). Clearly, there is an
exquisite balance and a complex regulation of patiisiological responses by

endogenous and exogenous gasotransmitters (SZzWH, 2

1.4.3.3 BS and cardiovascular system

It was conventionally held that,B interfered with cardiovasculamction as a result of
the secondary anoxia rather than a digtion of the gas on cardiac myocytes or
vascular smooth musatells (SMCs) (Reiffenstein et al., 1992). Howe\his view has
been overturned by the finding of noticeable amairtt,S and its synthase CSE in the

cardiovascular system.

As early as in 1997, expression of CSE and endagepmductiof H,S have been
detected in rat portal vein and thoracic a@asoki et al., 1997). A more recent study by
Zhao et al. revealed that C&Ehe only HS-generating enzyme in rat mesenteric artery
and other vascular tissues, with expression lede[SSE mMRNA ranked in an order of
pulmonary artery > aortatail artery > mesenteric artery (Zhao et al., DO®n the other
hand, Chen et al. found no activity or expressib€BS inhuman atrium and ventricle
tissues (Chen et al., 1999). The activity and/@ressiorof CBS were also lacking in
human internal mammary arterisgphenous veins, coronary arteries, or aorticiaster
(Chen et al., 1999; Bao et al., 1998). Thus, onBEGppears to be responsible for the

generation oH,S in cardiovascular tissues.

The effect of HS on vascular systems has recently been invedligateeveral in-

depth studies. $$ at physiologically relevant concentrations inducglaxation in portal
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vein (Hosoki et al., 1997), aorta (Zhao et al., PO@nd mesenteric artery beds of rats
(Cheng et al., 2004). In one study by Zhao etZa¢ et al., 2001), an intravenous bolus
injection of BHS at 2.8 and 14 pmol/kg body weight provoked asieart decrease in
mean arterial blood pressure of anaesthetized pdtshe tissue level, 6 induced a
concentration-dependent relaxation of the phenylaph(PHE)-precontracted rat aortic
tissues (IG, 125 pM). The investigators also provided sigifit insight into the
mechanism of the }$-induced vasorelaxant effect (Zhao et al., 200hgy found that
when isolatedat aortic tissues were precontracted with 20 @ h®/1 KCI,the maximum
vascular relaxation induced by,$ was 90% and 19%egspectively. This difference in
relaxation potency dfi,S may represent the portion of relaxation possiédiated by
potassium conductance. Furthermore, the effect ¢b ldn aortic tone was only
antagonized by the blocker ofat¢ channel, glibenclamide, but not blockers of other
types of potassium channels, indicating that theokelaxant effect of }$ was Krp-
dependent. Meanwhile, they demonstrated thz® Kirectly increased isp channel
currents and hyperpolarized membrane in isolate€&Maken together, all these lines
of evidence point to that43is an important endogenous vasorelaxant factorgasdous

opener of Krp channels in vascular SMCs.

In spite of the detection of CSE in myocardialuess, the effect of % on heart was
relatively less known. Geng et al. observed a meganotropic effect of HS in bothin
vitro andin vivo experiments, and the effect could partly be bldckg glibenclamide
(Geng et al., 2004). As discussed by the investrgain addition to direct effect of .8
on myocardium, the cardiac contraction could alsaftiected by its peripheral vascular

effect, because 13 dilated arteries and veins, reducing central uenmessure, which
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could result in a decrease of the venous returnraddction of cardiac pre- and post-
loads. Although this study is suggestive of a foleH,S in regulating cardiac function,
the significance of these observations should éurtbe determined in pathological

settings.

1.4.3.4 Other effects of KIS

Sulfide may also have therapeutic potential in #neas of angiogenesis and wound
healing. Studies have demonstrated ths&8 ktimulates endothelial cell growth, adhesion,
migration and promotes scratched wound healingtro,wprobably through a PI3-K/Akt
pathway (Cai et al., 2007). Intraperitoneal injectiof NaHS for 7 days significant
increases neovascularization in rats. Other stushesved that sulfide donors promote
gastric ulcer healing in rodent models (Wallacalgt2007; Yonezawa et al., 2007), but

the effect did not appear to depend on NO syntleediGrp opening.

1.4.3.5 Interaction of BS and other gasotransmitters

H,S is the third gasotransmitters together with N@ &0. It is not surprising that these
mediators interact with one another in regulatialy fwnctions, cardiovascular responses
and inflammatory/immune functions. Published dagaehshown that the endogenous
production oH,S from rat aortic tissues is enhanced by NO damatinent (Zhao et al.,
2001). The NO donor also enhances the expressiai t¢ CSEin cultured vascular
SMCs. Hosoki et al. (Hosoki et al., 1997) observkdt low concentrations of 49
(30uM) markedly enhanced the vasorelaxant effette@NO donor sodium nitroprusside
(SNP). On the contrary, pretreatiagrtic tissues with a higher dose 0fSH(60uM)
inhibited the vasorelaxant effect of SNP. Apparently, theseai complex crosstalk

between HS and NO, where direct action on synthases magJmvied.
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Non-vascular aspects of NO-$linteractions have also been identified: it setrat
NO-related effects contribute to the cytoprotectwvel antinociceptive effects of sulfide
(Fiorucci et al., 2006). In macrophages;SHinhibits the expression of INOS but
upregulates the expression of heme oxygenase-le{@ih, 2006). LS also acts as a
scavenger and neutralizer of peroxynitrite (Whitaned al., 2004), a key player in the

cytotoxic effects of NO.

CO may be another factor capable of interactingn WS and NO. As noted above,
H,S can also upregulate HO1, and can therefore indudelayed production of CO.
Given that all three bind avidly to hemoglobin,wsation of hemoglobin with one could
lead to enhanced plasma levels and biological &ffeicthe others (Wang, 1998). Indeed,
saturation of erythrocytes with CO results in etedgplasma kB levels (Searcy and Lee,
1998). Additional studies are needed to examinevéi®us interplays between the three
gasotransmitters in health and disease, and tdifiglemeas in which pharmacological
modulation of these agents (alone or in combinatioay provide therapeutic benefit

(Szabé, 2007).

1.5 Objectives and significance of the present styd

Studies have suggested thaiSHplays a part in regulating heart contractilityden
physiological situation (Geng et al., 2004). Howevtke effect of HS on the heart under
pathological situation, such as ischemia, is stilknown. To date, most of the known
effects of HS are mediated through an action oprKchannels. Considering that
opening of Krp channels is an essential event for developmentisohemic
preconditioning-induced cardioprotection and thi®tgction could be mimicked by

pharmacological opener of A channels, it merits study to investigate whethe® H
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could exert a similar beneficial effect through oipg Karp channels on a heart

undergoing ischemic challenge.

Therefore the objective of current study was toingeite the role of & in the
cardioprotection against ischemia injury. To bec#pe 1) endogenous #$ levels were
assessed in both normal and ischemia-insulted mgiataissues to examine whether
endogenous }5 production altered during ischemia insult; 2) ilitors of HS
biosynthesis were employed to investigate whetimelogenous k6 contributed to the
cardioprotection induced by ischemic preconditigni®) a sulfide donor was applied in
an attempt to observe whether exogenofs ¢duld increase the resistance of myocardial
tissues to ischemic attacks. Bathvitro andin vivo models were used to verify these
issues at cellular level and the whole animal levd the cellular level, isolated
cardiomyocyte model was adopted due to its advantagtudying signaling mechanisms
without confounding factors from the whole circuidat At whole animal level, a rat
model of myocardial infarction was employed, as sdtare considerable similarity on the

cardiovascular system with humans.

Accordingly, the findings from current study wergpected to contribute to the
knowledge in three areas: pathophysiology of cardiahemia, mechanisms of ischemic
preconditioning-induced cardioprotection, and ti@dgical profile of HS. The results
not only revealed a novel mechanism for ischemicec@nditioning-induced
cardioprotection, but also identified a simple asftective intervention approach for
ischemic heart diseases. The results fionvivo experiments also provided valuable

information for the translation from the benchhe bedside.
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Chapter 2 Endogenous HS mediates the cardioprotection induced

by ischemic preconditioning in rat cardiomyocytes

2.1 Introduction

Hydrogen sulfide (kS) represents the most recently identified endogengaseous
messenger (Wang, 2002). The detection of plentfd synthase CSE in the heart (Geng
et al., 2004) suggests that endogenoyS production is necessary for a well-functioned
heart. However, it is not clear how the endogendyS level is associated with the
heart’'s condition. Thus we investigated whetherghg a difference in endogenousSH
production between healthy cardiomyocytes and migscyundergoing ischemia

challenge.

Ischemic preconditioning (IP) refers to the phenoamethat previous exposure to
brief sublethal ischemia provides protection on teart against subsequent severe
ischemia insults (Murry et al., 1986). It is a pofuenatural cardioprotective mechanism.
A pivotal signaling event during IP is the openofgarp channels (Sanada et al., 2004).
The ability of HS to open Krp channels in smooth muscle cells (Zhao et al., 001
prompted us to investigate whether endogenosts &iso plays a part in the IP-induced

cardioprotection.

2.2 Materials and methods

2.2.1 Isolation of adult rat cardiomyocytes
Sprague-Dawely rats (190~210 g, male) were anes#itetwith intraperitoneali.p.)
injection of a combination of ketamine (75mg/kg)daxylazine (10mg/kg). Heparin

(1000 1U) was administereich. to prevent coagulation during removal of the heaine
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heart was quickly excised, mounted on a Langendapfiaratus, and perfused in a
retrograde fashion via the aorta with calcium-figgode's solution (in mmol/L): 137
NaCl, 5.4 KCI, 1 MgCJ, 10 HEPES, 10 Glucose, pH 7.4 at 37 °C. After 6 e
perfusion solution was changed to the Tyrode'stimmiicontaining 1 mg/ml collagenase
type | and 0.28 mg/ml protease (type XIV) and psefli for a further 25-30 min. The
perfusion solution was then changed t6'Cayrodes solution containing 2 x Tomol/L
CaClb without enzymes for an additional 5 min. The viendar tissue was then cut into
small pieces in a Petri dish containing pre-warr@efl” Tyrode's solution and shaken
gently to ensure adequate dispersion of dissocizaediac myocytes. A 2.5 x 10meter
mesh screen was used to separate the isolatedcangocytes from cardiac tissue. The
cells were then washed three times in**grode's solution and collected by
centrifugation (500 rpm, for 1 min). aconcentration of the Tyrode's solution was
increased gradually to 1.25 x£@nol/L in 20 min. More than 80% of the cells weoel
shaped and impermeable to trypan-blue. The celle \alowed to stabilize for 30 min

before any experiments.

2.2.2 Simulation of ischemia and ischemia precondining

In the present study, we simulated ischemia withHe6.6 glucose-free Kreb’s buffer
containing 10 mM 2-deoxy-D-glucose (2-DOG), an mtar ofglycolysis (Macianskiene
et al. 2001), and 10 mM sodium dithion{i¢a.S,0,4), an oxygen scavenger (Otter and
Austin, 2000). This simulated ischemia solutionducesa mixture of effects including
metabolic inhibition, anoxia,and acidosis. When the solution was used for
preconditioning purpose, the dose of 2-DOG andSp@, were halved to generate a

milder ischemic condition.
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2.2.3 Experimental protocol

In the present study, we adopted two well-estabtigbreconditioning models to observe
respectively the first and second phase of IP’diogrotection. For the induction of early
phase of IP (Ho et al., 2002), cardiomyocytes waibjected to three cycle of brief
ischemia and reperfusion, with each cycle compose® min of preconditioning
ischemia and 5 min of reperfusion with normal Deglti#s modified Eagle'siedium
(DMEM) (shown in Fig 2-2A). Lethal ischemia wastiated subsequently and lasted for
9 min, followed by reperfusion for 10 min. For tineluction of late phase of IP (Nayeem
et al.,, 1997; Wu et al.,, 1999), cells were subpdie a single episode of 30 min of
preconditioning ischemia. Lethal ischemia was até@d 20 hours later and followed by
10 min of reperfusion (shown in Fig. 2-4A). In eaotperiment, cells were divided into
four groups: vehicle-treated group (VP), IP-treatgcbup (IP), and either DL-
propargylglycine (PAG) op-cyano-L-alanine (BCA) plus IP-treated groups (PAG6r
BCA+IP). In the latter two groups, 2 x £0omol/L PAG or 2 x 10° mol/L BCA were
applied during IP. Cells in VP group were incubateth DMEM during preconditioning

ischemia.

2.2.4 Measurement of HS concentration

The culture media of cardiomyocytes were colleéteaneasurement of endogenougSH
production. 75uL media from each sample was added into an Epeintdye that already
contained 450uL deionised water and 250L zinc acetate (1% w/v). TheN, N-
dimethylp-phenylenediamine sulphate (@M in 7.2 mol/L HCI, 133ul) and Fed
(30uM in 1.2 mol/L HCI, 133uL) were added in sequence for color development at

room temperature. After 10 min, trichloroaceticda¢10% w/v, 250uL) was added to
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precipitate any protein that might be present ie rttedia. The tubes were then
centrifuged (10,000 x g) for 3 min and 3@Oaliquots from the resulting supernatants
were transferred into a 96-well plate. Absorbanees wetermined at 670 nm using a 96

well microplate reader (Tecan Systems Inc., U.S.A.)

2.2.5 Assessment of cell viability and morphology

Trypan blue exclusion was used as an index of ngowiability (Zhou et al., 1996;
Hiebert and Ping, 1997). Afteells were incubated with 0.4% (w/v) trypan blue dgr 3
min, living cells were unstained and termed nonbluesc®lonbluecells/total cells were
determined in a hemocytometer chamiig@ng a light microscope (10x magnification).
Cell morphology was also assessed by microsco@mexation (Armstrongnd Ganote,
1994; Zhou et al., 1996). Percentage of rod-shdlesdjth/widthratio, >3:1) cells were
determined as an indicator of the percentage dftheeardiomyocytes. 200-500 cells in

each of 5-7 cultures were tested for each group.

2.2.6 Assessment of cellular injury

Lactate dehydrogenase (LDH) release was used ilex of cellular injury (Nayeem et
al., 1997). The activity in the cultured mediumnesents LDH release from the cultured
ventricular myocytes. Both culture medium and ¢gdhtes (prepared with lysis buffer
containing 1% triton-X100) were collected for det@ration of LDH activity. LDH assay
was performed using a commercially available kigi¢t). The assay was based on the
reduction of NAD catalyzed by LDH. The reduced NARADH) was utilized in the
stoichiometric conversion of a tetrazolium dye. Tdlesorbance at a wave length of
490nm was measured spectrophotometrically with eraplate reader (Tecon Systems

Inc. U.S.A.). The background absorbance at 690nm sustracted from the absorbance



45

at 490nm. The results were presented as LDH raleade the medium in terms of
percentage of the total LDH activity (medium + dg#iate) and normalized to 100% for

VP group.

2.2.7 Measurement of intracellular C&* ([Ca*"];)

Ventricular myocytes were incubated with fura-2/AM x 10° mol/L) (25 min) in
Tyrode's solution supplemented with 1.25 x*1fol/L CaC}. The unincorporated dye
was removed by washing the cells twice with frestubation solution. Loaded cells
were kept at room temperature (24 °C-26 °C) fon®9 to allow the fura-2/AM in the
cytosol to de-esterify.

Loaded ventricular myocytes were then transferredthie stage of an inverted
microscope (Nikon) in a superfusion chamber at rommperature. The inverted
microscope was coupled with a dual-wavelength a#on spectrofluorometer
(Intracellular imaging Inc, USA). Myocytes were fassed with Krebs' bicarbonate buffer
(KB buffer, mmol/L; 117 NaCl, 5 KCI, 1.2 MgS0 1.2 KHPO,, 1.25 Call, 25
NaHCGQ;, 11 glucose, with 1% wi/v dialyzed BSA) and gasséd 95% Q/5% CQ. The
myocytes selected for the study were rod-shapeth wiearstriations. These cells
exhibited synchronous contraction (twitch) in rasp® to suprathreshold (4 ms, 0.2 Hz)
stimuli delivered by a stimulator (Grass S88) viaot platinum field-stimulation
electrodes immersed in the bathing fluid. Fluoressggnals obtained at 340 nm (F340)
and at 380 nm (F380) excitation wavelengths wemedt in a computer for data
processing and analysis. The F340/F380 ratio wasd ts indicate [C&]; level in the

myocytes.

2.2.8 Statistical Analysis.



46

Values presented are mean = SEDhe-way ANOVA was used with a post hoc
(Bonferroni)test to determine the difference between groups. siginificancdéevel was

set afp < 0.05.

2.2.9 Drugs and chemicals

Type 1 collagenase, protease XIV, 2-DO®AG, BCA, N,N-dimethylp-
phenylenediamine sulfat&eCk, and trypan blue dye were purchased from Sigma-
Aldrich (St. Louis, MO). Fura-2 was purchaskdm Invitrogen (Carlsbad, CA). All
chemicals were dissolved in distilled water excepa-2/AM, which was dissolved in

DMSO at a final concentration < 0.1% (w/v)

2.3 Results

2.3.1Endogenous b5 production in rat cardiomyocytes was suppressed uding
ischemia and partly restored by IP

To investigate whether endogenous,SHlevel is altered during ischemia, 3
concentrationn cell culture medium after 9 min of ischemia wastermined.The
experimental procedures are shown in Fig. 2-1A daedcribedunder Materials and
Methods. As shown in Fig. 2-1B, 9 min of ischemia sigrgiintly decreased endogenous
H,S level to 23.7 + 6.9% of that in VP groyp = 10, p < 0.001). Interestingly,
preconditioning with three cycles isthemia significantly attenuated tihéibitory effect

of ischemia on b5 production (IP, 49.6 £5%,n = 5, p < 0.05 versus ischemigoup).
These data suggest that IP may protect the hearhsigischemia at least partly by

enhancing the endogenous production g5 .H
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Figure 2-1 Effects of ischemia and IP on endogent® production. (A) Experimental design.
(B)Endogenous k5 production in normal rat cardiomyocytes (Conydmamyocytes undergoing
ischemia (Ischemia), and cardiomyocytes subjectd® {IP). Mean + S.E.M.n=51t0 10" ,p<
0.001 versus Control; $,< 0.05 versus ischemia.

2.3.2 Early cardioprotection induced by IP was bloked by CSE inhibitors

To determine whether endogenous,SHplays a part in the IP-induced early
cardioprotection, PAG and BCA were used as inhibitd endogenous43 synthase and
applied according to the protocol shown in Fig.2-8/e assessed the protective effects
of 3 episodes of brief ischemia and reperfusiorcelh viability and cell morphology in
the presence and absence of CSE inhibitors. AftairBof ischemia followed by 10min

of reperfusion, the percentagenonblue cells and percentage of rod-shaped cellB
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group were significantly higher than those in végreconditioned (VRJroup (Fig. 2-2
B & C). The presence of 2 x Famol/L PAG or 2 x 1G mol/L BCA during IP reversed
the cardioprotectioan cell viability and morphology, while neither PAGr BCA alone
affected cell viability (control, 69.2 32%; PAG, 63.4 + 2.4%; BCA, 65.1 £ 1.7%, rall
= 5) or morphology (control, 62.8 + 1.2%; PAG, 68.8.8%; BCA, 59.2 + 1.2%, afl =

5).
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Figure 2-2 Effects of early IP on cell viabilitydiell morphology in the presence and absence of
CSE inhibitors. (A) Experimental protocol. (B) Celability at 10 min into reperfusion in VP, IP,
IP+PAG, and IP+BCA. (C) Percentage of rod-shapdid e¢ 10 min into reperfusion in VP, IP,
IP+PAG, and IP+BCA. Mean + S.E.M,= 6 to 18 cultures of 500 cells each.p < 0.01 versus
VP; +,p < 0.05 versus Il
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Electrical stimulation mimics the arrival of an iact potential generated from the
sino-atrial node of the heart, triggering the sacascade of events i.e.-membrane
depolarization, influx of Cd, C&" release from the SR and finally muscle contraction
We observed theecovery of electrically-induced [€%; transients (E[CE];) during
ischemia and reperfusion to investigate wheiftabition of endogenous 1$ formation
would affectthe cardioprotection of IP on cell function. As amin Fig. 2-3A, the
amplitude of E[C&]; in VP group following ischemia and reperfusion wasduced to
20.2 +3.8% of its initial amplitude. IP remarkably attemed the wane of E[§; during
ischemia and reperfusion and fQatransients in IP group was able to recover to #0.0
3.5% of its initial amplitude. Both PA@nd BCA reversed this beneficial effect of IP
(PAG,34.8 + 3.6%n = 19; BCA, 37.8 + 4.6%n = 10,p < 0.001; Fig. 2-3B), while they
did not produce significant effect on EfClawhen applied alone. These data suggest that
endogenous 6 mediated the early phase of cardioprotectionezhby IP on both cell

viability and cell function.
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Figure 2-3 Effects of early IP on recovery of efiectly-induced [C4"]; transients (E[CE];) in

the presence and absence of CSE inhibitors. Expatahprocedures used were the same as those
in Fig. 2-2A. (A) Representative tracings of EfGain VP and IP groups during ischemia and
reperfusion. (B) Amplitude of E[G§; transients at 5 min of reperfusion. Mean + S.Eiv, 10

to 26;", p < 0.001 versus VP; ++$,< 0.001 versus IP.
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2.3.3 Late cardioprotection induced by IP was blooéd by CSE inhibitors

This series of experiments was designed to deternwhether endogenous,$l is
involved in the late phase of cardioprotection el by IP. Experimental procedures
were shown in Fig. 2-4A. Rat cardiomyocytes welgestted to I/R injury 20 hours after
preconditioning ischemia. IP significantly incredgbe percentage of the non-blue cells
per total number of cells at 10 min into reperfas{@1.8 £ 3.0%, n = 1R < 0. 01) as
compared with that found in VP group (20.8 £ 1.7; 13). Pretreatment with PAG
(2 x 10°% mol/L or BCA (2 x 10° mol/L) blocked the cardioprotective effect of IFd

2-4B).

To further substantiate the role of endogenouS, Hve determined cellular injury
using LDH release as an index. As shown in FigC24# significantly decreased cellular
injury caused by severe ischemia insults. Pretreatrwith PAG or BCA blocked this

effect (Fig. 2-4C).
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versus VP; +p < 0.05, ++p < 0.01 versus IP.
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The electrically-induced [G4; transients were also traced during reperfusion to
examine the functional status of the cardiomyocyi®s significantly improved the
recovery of E[C&]; which was compromised during ischemia (Fig. 2-5&/fP). Again,
this beneficial effect was reversed by either oé thS synthesis inhibitors, PAG
(2 x 10° mol/L) or BCA (2 x 10° mol/L) (Fig. 2-5). Taken together, these data ssyg

that endogenousA3 was also involved in the late cardioprotectiatuiced by IP.
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Figure 2-5 Effects of late IP on recovery of elietity-induced [C&"; transients (E[CH];) in

the presence and absence of CSE inhibitors. Expetah procedures used were the same as
shown in Figure 2-4A. The amplitude of EfJain each group was determined at 5 min of
reperfusion. Values are mean + SEM; The number ofoaytes sampled for calcium
measurements were 9 (VP), 36 (IP), 38 (PAG+IP) 42adBCA+IP). ***P < 0.001 vs VP;
P <0.001vs IP.

2.3.4 CSE inhibitors reduced endogenous43 level in rat cardiomyocytes
This experiment was designed to confirm that ttss lof IP cardioprotection observed in
the presence of CSE inhibitors was indeed due decaeased endogenousSHevel in

the cell. As shown in Fig. 2-6, incubating cellshi®AG or BCA at 2 x 18 mol/L for 40
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min, the conditions applied in the above experimersignificantly decreased .8

production by 78.8 ¥.1 (h = 5) and 60.4 = 7.6%n(= 5), respectively.

45
40

35 L
30

285
20

15 E E = = S E = S

10 4

. T

0
WP PAG ECA

H,5 production (pbd)

Figure 2-6 Effects of CSE inhibitors on endogendyS production. Mean + S.E.vn;= 5 to 10.
™ p<0.001 versus Con.

2.3.5 Sustained inhibition of endogenous 13 production caused cell injury.

The above findings showed that inhibition of endoges HS disabled the
cardioprotection caused by IP during ischemia. H@rethe consequence of sustained
inhibition of endogenous #$ under physiological situation is unknown. FigZ 2hows
that incubation of the cardiac myocytes with PA@GQA for 20 hours increased cellular
injury index compared with the baseline level inrmal cardiomyocytes. These data
suggest that sustained inhibition of endogenouy$ Kauses cell injury and that
endogenous % plays an important role in maintaining cell imtg during

physiological situation.
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Figure 2-7 Effects of CSE inhibitors on cellulajuiry index. Cells were incubated with PAG and
BCA for 20 hours. Mean = SEMN = 7-8. #? < 0.05 **P < 0.01 vs VP.

2.4 Discussion

The present study was primarily aimed to elucidhate role of endogenous,8 in IP-
induced cardioprotection. Since CSE is the mainyeez generating $6 in the heart
(Zhao et al. 2001), CSE inhibitors were used. @fitthibitors employed, PAG has been
most studied. This compound causes an irreversitdehanism-based inhibition of CSE
enzyme activityin vitro (Johnston et al., 1979) and, when administereats produces
an almost complete inhibition of liver CSE enzyneéi\aty (measureadx vivo) (Porter et
al., 1996; Uren et al., 1978). Similarly, BCA hdsoabeen reported to cause potent and
reversible inhibition of CSE activity (Uren et all978; Pfeffer et al., 1967). In the
present study, we examined the effects of PAG a@h Bn the endogenous,H
production by measuring the concentration @S5Hn the culture medium. Both drugs
effectively reduced the 43 level in the culture medium, indirectly indicatia drop of

intracellular HS level.
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Based on the reliable effects of these tool drilys, present study established an
obligatory role of endogenous,§in the cardioprotection afforded by IP. IP proteitis
cardiomyocytes against ischemia-induced cell daathinjury as well as impairment on
cell function. Inhibition of HS biosynthesisvith either PAG or BCA significantly
diminished the protection observed in both theyeanld late phase of IP. Moreover, we
also observed that 6 production was suppressed in cardiomyocytes cigojeto
ischemia. Preconditioning the cells with brief isoha partly restored endogenousSH
level. Taken together, our data provide the firgidence that endogenows,S is

necessary for the development of both early arddatdioprotection of IP.

It appears that endogenousHevel determines the condition of the cardiomyesy
since decreased.H level is associated with ischemia and increasg£llevel by IP is
associated with cardioprotection. Indeed, we fouhdt sustained inhibition of
endogenous $$ production caused cell injury, suggesting thaneunder physiological
situation, maintenance of certain endogenogS ldvel is important for the wellness of

the cardiomyocytes.

Our results also demonstrated that IP was ableastd3S production. Like the role
of NO in the IP cardioprotection, the increases lth preconditioned cardiomyocytes is
likely to contribute to the cardioprotection byiaating some central components of the
signaling pathway. Thus it is intriguing to obsemvbether direct preconditioning the

cells with exogenous 43 is sufficient to induce cardioprotection withdRit

In conclusion, the present study reveals a bemréfimle of endogenous .8 in
cardiomyocytes and provokes more interest to inyat& the effect of exogenous$ion

the heart.
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Chapter 3 H,S preconditioning induces biphasic cardioprotection

against ischemic injury in rat cardiomyocytes

3.1 Introduction

We investigated in this series of experiments wiethretreatment with #$ before
ischemia, namely, ¥ preconditioning (SP), is able to attenuate iscaensociated cell

damages and its underlying mechanisms.

3.2 Materials and methods

3.2.1 Experimental protocol

In the present study, 8 preconditioning was conducted following the sgmnatocol
used for induction of IP except for the replacemehtP buffer with Kreb’s buffer
containing different concentrations of,$1 For the induction of early phase of SP,
cardiomyocytes were subjected to three cycle ofa8& reperfusion, with each cycle
composed of 3 min of SP and 5 min of reperfusiothwiormal Dulbecco's modified
Eagle'smedium (DMEM). Lethal ischemia was initiated suhsatfly and lasted for 9
min, followed by reperfusion for 10 min (shown ilgRB3-1A). For the induction of late
phase of SP, cells were subjected to 30 min olL8#al ischemia was initiated 20 hours
later. To investigate the signal mechanisms forcels in separated groups were treated
respectively with non-selective A channel blocker glibenclamide (£0mol/L),
sarcKarp blocker HMR-1098 (2 x I8 mol/L), mitoKarp bocker 5-HD (10 mol/L), NO
synthase inhibitor L-NAME (13 mol/L), and PKC inhibitor chelerythrine (3 x 10
mol/L) 15min before and during SP. Cells in VP growere incubated with DMEM

during preconditioning ischemia.



58

3.2.2 Other methods
Isolation of cardiomyocytes, simulation of ischem@éssessment of cell viability and
morphology, intracellular G4 imaging have been described in tMaterials and

Methods in Chapter 2.

3.2.3 Statistical analysis
Values presented are mean + S.EWMe-way analysis of variance was used with a post
hoc (Bonferronifest to determine the difference between groups. Siginificancdevel

was set ap < 0.05.

3.2.4 Drugs and chemicals

L-NAME, 5-HD and chelerythrine chloride were purskd from Sigma Chemical Co,
USA. HMR-1098 was a generous gift from Aventis Rhar Deutschland GmbH
(Frankfurt, Germany). Glibenclamide was obtainemirfrTocris Cookson Ltd, UKAII
chemicals were dissolved in deionized water exgépenclamide, which was dissolved

in DMSO at a final concentratict0.1% (w/v).
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3.3 Results

3.3.1 SP induced immediate cardioprotection in ratardiomyocytes

Cell viability and morphology were assessed in blaiB-preconditioned cells (SP) and
vehicle-preconditioned cells (VP) 10 min into rdpsion after lethal ischemia (Fig. 3-
1A). As shown irFig. 3-1B, three cycles of 5 min of exposure tdedt#nt concentrations
of NaHS (1, 10°, 10% and 1@ mol/L) increased the percentagenohblue cells in a
concentration-dependem@anner. Cell viability in SP was significantly hgghthan that in
VP group when NaHS concentration reaches @l/L, and the maximurprotective
response was observed at*Ifol/L of NaHS (VP, 32.6 + 2.1%; Tomol/L NaHS, 45.9

+2.3%:; 10" mol/L NaHS, 47.9 + 2.2%; afl = 7; Fig. 3-1B).

To compare the responses in term of morphology gdathe percentage of rod-
shaped cells was determined. As shown in Fig. 3gr€treatment with NaHS at £0
mol/L and 10° mol/L preserved a greater percentage of rod-shaplsthan VP group
(VP, 28.9 + 3.3%: 1® mol/L NaHS, 41.3 + 2.8%4:0* mol/L NaHS, 43.4 + 3.1%; aff =
7). These data indicate thatFpreconditioning is able to produce an IP-likesefffon

cell viability and morphology.
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Figure 3-1 Early cardioprotection induced by SPrah cardiomyocytes. (A) Experimental design.
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VP. (C) Concentration-dependent effect of SP oh merphology. Rod-shaped cells per total cells
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To determine the functional status of the cellsctrically induced [C&]; transients
(E[C&];) before, during, andfter ischemia were recorded. As shown in Fig. 82,
amplitude of E[C&]; in VP group was decreased by ischemia and repenfus 25.8 +
3.0% of the amplitude of normal E[€} transients in control group. Preconditioning
cells with HS significantly attenuated this effect, suggestimgt SP improved the cell

function recovery after ischemia and reperfusigarin
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Figure 3-2 Effect of SP on recovery of electricaiifyduced [C&]; transients (E[CE]) in single
cardiomyocytes. (A) Representative tracings of Efffan VP and SP groups. (B) Group results
showing the amplitudes of E[€% in normal myocytes (Con) and myocytes in VP andg&Rips at

10 min into reperfusion. Values are mean + S.Efvk;25. , p < 0.001 versus the value in the Con
group; +++,p < 0.001 versus the value in the VP group.
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3.3.2 SP induced late cardioprotection in rat cardimyocytes

To investigate whether 49 was able to produce late cardioprotection agasestemic
injury, cardiomyocytes were subjected to lethalhéuia 20 hours after they were
preconditioned with different concentrations ofSH(Fig. 3-3A). After 5 min of severe
ischemia and 10 min of reperfusion, the percentageon-blue cells was 21.4 + 7.0%
(N=15) in VP group (Fig. 3-3B). In SP groups whemls were pretreated with
10°~10" mol/L NaHS for 30 min, the percentage of non-bbedls was significantly
higher than that of VP group when the NaHS conegioim was 10 mol/L and the
maximum protective response was observed at a ntatien of 10* mol/L

(38.5 + 4.9%N = 9).

A similar result was found when using the perceataf rod-shaped cells as an
indicator of the cell conditions. Only 10.8 £ 1.1% = 10) of the cells were rod-shaped
in VP group. NaHS at I® ~ 10* mol/L significantly increased the percentage af-ro
shaped cells. The maximum protection reached Atr6l/L NaHS (16.4 + 2.09%\ = 11;
Fig. 3-3C). These dose-dependent responses arestemisvith those found in the early
phase of SP-induced cardioprotection, indicatingt t8P is able to induce biphasic

cardioprotection against ischemic injury.



63

A Pretreatment Culture Ischemia Reperfusion

v ] N 2 ]
[ s ] | I

30 min 20h : 5 min . 10 min

50 -

RLAE S S

40

30

i

=

Non-blueftotal cells (%)

2000 ¢

A\

VP o10% 10% 104 103 M) NaHS
SP
(Z‘ 25 1
2[[- o

157

L
=

G102 10 103 WD NaHS
SP

10 7

\\\Q_'
0

Fod-shaped cells/Total cells (%0)

VP o1

=
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*** P < 0.001 vs VP.
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3.3.3 SP-induced late cardioprotection lasted atdest 28h

Because of the clinical significance of the latede@protection, we investigated the time
course of the protective effects by determining elbility and morphology at different
time points (1, 6, 16, 20, and 28 hours) after 3@ of exposure to b6 (Fig. 3-4A).
Despite decreased viability with increased cultpegiod, SP groups at 1, 16, 20 and
28 hours still displayed higher percentage of noaldells compared with time-matched
VP groups (Fig. 3-4B). Similar results were alsorfd when examining cell morphology
(Fig. 3-4C). These data confirmed that there are twindows of cardioprotection
induced by HS preconditioning and also further demonstrated 8R-induced late

cardioprotection appeared 16 hours after precamilitg and lasts at least until 28 hours.



By Pretreatiment

Culture

65

I3 RE

[ i

1h

I ]

| 2

1h

| ]

v

Eh - )

o

ah . )

Wi

N

K9

loh

WP

LU R

Ky

PR

W

ZZh

<F

a Il

30 min

28 h Smm 10 mu

i ] 1 1

20
70
60
50
40
30
20
10

Non-blueftotal cells (%)

50 A

Rod-shaped cells
ftotal cells (%)

1n 4

L

a0 -

40 4

30 A
20 A

LA
*
%
6h l6h 20h 28h

1a

6 h lé6h  20h  2%h

Figure 3-4 Time course of SP-induced cardiopradect{A) Experimental protocol. After pretreatment,
cells were cultured in DMEM for 1, 6, 16, 20, aritburs respectively before being subjected torseve
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3.3.4 SP-induced late cardioprotection counteractdifferent periods of ischemia and
reperfusion

These series of experiments were designed to dietenme effectiveness of SP-induced
late cardioprotection against different periodssechemia and reperfusion. As shown in
Fig. 3-5B&C, after 5 min, 10 min or 30 min of ischia and 10 min of reperfusion, cell
viability and percentage of rod-shaped cells inggsups were significantly higher than

those in corresponding VP groups.

We also observed the cardioprotective effects ofaBHBifferent time points during
reperfusion. SP increased myocyte viability ana@etage of rod-shaped cells at 10 min,
20 min or 60 min into reperfusion (Fig. 3-6). Thedata suggest that SP protects
cardiomyocytes from different periods of ischemnsults and the cardioprotection lasts

at least 60 min after the onset of reperfusion.
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Figure 3-5 Late cardioprotection induced by SP msfaidifferent periods of ischemia. (A)
Experimental protocol. Cells were subjected toedéht periods of ischemia (IS) after 20 hours
culture. Cell viability (B) and cell morphology (@Jere examined at 10 min into reperfusion (RE).
Values are presented as mean = SBHW; 5-16 cultures of 200~600 cells eactP < 0.05,

** P < (.01, **P < 0.001vs corresponding VP groups.
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Figure 3-6 Late cardioprotection induced by SP rgaidifferent periods of reperfusion. (A)
Experimental protocol. After 20 hours of culturardiomyocytes were subjected to 5 min of ischemia
(IS) followed by different periods of reperfusioREK). Cell viability (B) and cell morphology (C)
were examined at 10 min, 20 min or 1 hour into reon (RE). Values are presented as
mean * SEM;N =5-16 cultures of 200~600 cells each? ¢0.05, **P <0.01, **P <0.001 vs
corresponding VP groups.
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3.3.5 SP-induced late cardioprotection was blockealy K arp inhibitors

The goal of this series of experiments was to ptbbemechanism(s) involved in the late
cardioprotection of SP. The experimental procedwa&® shown in Fig. 3-7A. Treatment
with glibenclamide (17 mol/L), a non-selective kp blocker, 15 min before and during
SP significantly attenuated the cardioprotectioserted in SP groups, as manifested by
the reduced cell viability and increased cellulguiy (LDH release) compared with SP
groups (Fig. 3-7B&C). The contribution of each syda&t of Karp channels was also
assessed by using subtype-specific blockers, 5-HD" (mol/L, a mitochondrial Kre
blocker), and HMR-1098 (2 x IDmol/L, a sarcolemmal k¢p blocker). As shown in Fig.
3-7B&C, HMR-1098 but not 5-HD reversed SP-inducewtgctive effects on cell
viability and injury, suggesting that only sarcolmal Katp plays a part in the
cardioprotection of SP. In separate experimentdegtlamide, 5-HD or HMR-1098
alone (at the same concentration and over the ganee course) did not affect cell

viability.
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Figure 3-7 Effects of SP on cell viability and c#dir injury in the presence and absence gfihannel
blockers. (A) Experimental design. Glibenclamiddil{€én), 5-HD and HMR-1098 (HMR) were applied
15 min before and during SP. (B) Cell viability. IMes were presented as non-blue cells per total
myocytes counted; n=6-7 cultures ®200-500 cells each. (C) Cellular injury index. eduwere
presented as supernatant LDH activity/total LDH ivéti¢s (supernatant + cells lysateN = 5.
Mean + SEM. *P < 0.05, **P < 0.01 vs VP;P < 0.05,”"P < 0.01,""P < 0.001, vs SP.
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To determine whether A& channels are also involved in the protection ofo8Rell
function, we observed the electrically-induced {Qatransients during ischemia and
reperfusion in myocytes co-pretreated witfSHand Krp blockers. Fig. 3-8 shows that
the protective effect of SP was significantly atteted by glibenclamide and HMR-1098,

while 5-HD did not produce any significant effect.

Q0 7
80 1
70
60 7
507
401 _T
209
201
10 1

WO

[Ca?) transient (Yo rormal)

Amplitude of Electricaly 1nduced

MMM
1

VP - Gliben 5-
P

]

L

Figure 3-8 Effects of SP on recovery of Ef¢aamplitude in the presence and absence g K
channel blockers. The amplitude of Ef§awas determined at 10 min into reperfusion. Valaes
mean + SEM; The numbers of myocytes sampled forsorements were 22 (VP), 20 (SP), 38
(Gliben + SP), 16 (5-HD + SP) and 12(HMR + SP).P* 0.001 vs VPP < 0.001 vs SP.
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3.3.6 SP-induced late cardioprotection was blockdaly a NO synthase inhibitor

To examine the involvement of NO in the cardiopetite of SP, L-NAME (10 mol/L)
was used as a non-selective inhibitor of all NO tlsgge. L-NAME significantly
attenuated the cardioprotection of SP on cell \itgb{shown in Fig. 3-9A) and cell

function (shown in Fig.3-9B).
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Figure 3-9 Effects of SP on cell viability and EfJatransients in the presence and absence of a NO
synthase inhibitor, L-NAME. (A) Experiment protoc¢B) Cell viability at 10 min into reperfusion.
Mean + SEM:N = 6-7 cultures 0f200-500 cells each. (C) Amplitude of Ef¢Jatransients at 10
min into reperfusion. The number of myocytes sahfibe calcium measurements were 22 (VP), 39
(SP) and 46 (L-NAME+SP). *# < 0.001 vs VPP < 0.05,”"P < 0.001 vs SP.
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3.3.7 SP-induced late cardioprotection was blockealy PKC inhibitors

To determine the role of PKC in the SP-induced icgrdtection, PKC inhibitors,
chelerythrine (3 x 1® mol/L, chelery) and calphostine C (1Gmol/L, Cal C) were
applied 15 min before and during SP preconditior(ifig. 3-10A). Both drugs, which
alone had no effects, blunted the cardioprotectbrsP on cell viability and cellular

injury (Fig.3-10B&C).
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Figure 3-10 Effects of SP on cell viability and lair injury in the presence and absence of PKC
inhibitors. (A) Experiment protocol. Chelerythrii€helery) and Calphostine C (Cal C) were apllied
15 min before and during SP. (B) Cell viability. IMas were presented as non-blue cells per total
myocytes counted. n=5-13 cultures £#00-500 cells each.” P<0.01 vs VP;'P<0.05 vsSP. (B)
Cellular injury index. Values were presented asesmgtant LDH activity/total LDH activities
(supernatant + cell lysate) normalized to 100% Bf¢foup (control). n=6. Mean + SEMP<0.01 vs
VP, P<0.05,""P<0.01 vsSP.
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3.4 Discussion

In the present study, we investigated the effe@xaigenous k6 on rat cardiomyocytes
undergoing lethal ischemia. We found that NaHS,0aod of HS, produced biphasic
cardioprotection against ischemia-caused damagdes.fifst phase of cardioprotection
occurred immediately after 3 preconditioning, while the second phase is oladdev
between 16 hours and 28 hours afte6 hbreconditioning. Due to the limited time that
cardiomyocytes can survive in vitro, it is techtlicaifficult to observe the late phase of
cardioprotection after 28 hours. However, it isywbkely that the late cardioprotection
could last much longer, as the protective effecs sl very strong at 28 hours. These
data suggest that SP follows a similar time coassé, which also produces immediate
(1 to 2 hours) and delayed (12 to 72 hours) pratecagainst ischemia (Murry et al.,

1986; Kuzuya et al., 1993; Marber et al., 1993).

In both phases, NaHS at2a.0 mol/L concentration-dependently increased the cell
viability and the percentage of rod-shaped cellse Thaximum protective effect was
always observed at 1D mol/L NaHS. Accordingly, we used the concentratith*

mol/L for all subsequennh vitro experiments.

Considering the greater clinical importance ofldte cardioprotection, we performed
detailed study on its effectiveness against I/Rrinjn varied experimental settings. We
found that HS preconditioning protected cardiomyocytes agaitfiferent periods of
ischemia. As the duration of ischemia increases,pitotection appears more significant
on cell morphology than on cell viability, which pites that SP-induced cardioprotection
is particularly effective in salvaging more peraagg of functional cells rather than living

cells. Similar results were also found when cedlbuity and cell morphology were
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determined after different periods of reperfusibhe pronounced protection observed in
SP group after 60 min of reperfusion indicates thateffect of HS preconditioning is

prevention instead of delay of cell death.

In an attempt to probe the signaling mechanism wyidg the late cardioprotection,
we determined the involvement ofa}¢ channels, NO and PKC due to their important
roles in the late cardioprotection of IP. There &w® separate populations ofae
channels within the myocardium: the sakgiKand mitoKyrp channels (Gross and Fryer,
1999). Both sarcke channels and mitokpe channels have been reported to trigger or
mediate the cardioprotective effects of IP (Grossl #eart, 2003). Initial evidence
suggested that the sargi channels triggered or mediated the cardioproteaftects of
IP (Jovanovic et al., 1986; Toyoda et al., 200@wéver, more recent findings have
suggested a major role for mitgl channels (Gross and Peart, 2003; Liu et al., 1998;
Liu et al., 1999). In this study, we found that lbaton-selective krp channel blocker
glibenclamide and selective saigk blocker HMR-1098 reversed the cardioprotection
of SP, while selective mitokp blocker 5-HD failed to affect the protection of. Sese
data clearly indicate that sargie is the subtype of j&p channel that mediates the SP-
induced late cardioprotection. Opening of saxgichannels is associated with potassium
efflux, depolarization of cell membrane and shartgrof APD (Noma, 1983; Cole et al.,
1981). These effects reduce?Cmflux via L-type C&* channels and prevent the reversal
of the N&-C&* exchange system. The resultant decrease fii @dux would be
expected to lead to a reduction of the mechanigatraction, blunting of intracellular

Cd" overload, and energy sparing during ischemia anlky eeperfusion.
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The present study also demonstrated an essenkalofoPKC in SP-induced late
cardioprotection with two different PKC inhibitorEhe involvement of PKC is probably
secondary to the opening ofa}¢ channels, since 43 has been shown to directly open
Katp channels in smooth muscle cells (Zhao et al., R0®However, activation of PKC
and Karpchannel could also be codependent (Baxter et @5;1Gross and Pea?03),
given that protection provided by direcix#& channel openers could be abolished by
PKC antagonists anglice versa (Gaudette et al., 2000Additional experiments are
needed to determine whether opening afKchannels is an event upstream of PKC
activation in SP-induced late cardioprotectionatidition, the two PKC inhibitors used,
chelerythrine and calphostin C, are not isofornestle, which warrants further studies

to determine the specific isoforms involved.

The role of NO in the SP-induced cardioprotect®amother focus of interest in this
study. Over the past decade, many studies havealezlv@ critical role of NO in IP-
induced cardioprotection (Bolli, 2001). ImportanthyO alone is also sufficient to induce
late cardioprotection against myocardial ischenfiakano et al., 1998). In the present
study, we found that inhibition of NO synthesistwlt-NAME significantly attenuated
the cardioprotection of 4 on both cell viability and cell function. Thisasother line of
evidence supporting the concept that -crosstalk sexiietween endogenous

gasotransimitters (Szabd, 2007).

In conclusion, the present study has demonstrated, the first time, that
pharmacological preconditioning with the ;3 donor NaHS is able to confer
cardioprotection against ischemia probably viavatibn of sarckkrp channel, PK@&nd

release of NO.
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Chapter 4 H,S preconditioning-induced PKC activation regulates

intracellular calcium handling in rat cardiomyocytes

4.1 Introduction

The study in Chapter 3 has revealed that PKC iolmd in the SP-induced
cardioprotection. The PKC family consists of ase10 isoforms, of which PK@: ¢,
and o are the prominent isoforms expressed in the hddackay and Mochly-Rosen,
2001). Upon stimuli, PKC isoforms translocate fribma cytosol to subcellular membrane
regions, a process associated with their activafidackay and Mochly-Rosen, 2001).
However, it is completely unknown which isoformsultb be activated by H2S

preconditioning and how they mediate or executec#rdioprotection.

PKC activation has been reported to play a roleegulating intracellular calcium
handling (Ladilov et al., 1998; Stamm et al., 2081amm and del Nido, 2004). Under
the physiological condition, intracellular calciurnoncentration issophisticatedly
regulated by several proteins present in the samuolaland sarcoplasmic reticulum (SR)
membranes. Upon the arrival of action potentia?*@afluxes through the L-type €a
channel and triggers the opening of the ryanodeweptor (RyR), resulting ifurther
release of C& from SR, which accomplishes the sharp {Gaelevation required for
myofibril contraction (Guatimosim et al., 2002).the rat cardiomyocytes, >908b the
Cd" after contraction is immediately uptaken by SR s@aco(endo)plasmieticulum
Cd*-ATPase (SERCA), while the remaining“C#& pumped outf the cell via N&Ca*

exchanger (NCX) (Bers, 2000).
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However, the well-controlled intracellular €dnomeostasis could be easily disrupted
by ischemia and reperfusion insults. During iscleerekcessive Gaaccumulates in the
cytosol (Piper et al., 1993) and leads to a serfiegvere damages upon reperfusion. For
example, once re-energized by reperfusion, camiigafilaments contract in an extreme
and sustained manner (hypercontracture) due tostiwerdation of calcium on the
contractile apparatus (Siegmund, 1993). In singkeliomyocytes, such hypercontracture
causes irreversible shortening of cell length.igsues, it causes a disruptive change in
myocardium termed contraction band necrosis (Gard®®3). Under this circumstance,
a faster clearing of excessive “C&rom cytosol is therapeutically important as itui
potentially attenuate G overloading during ischemia (Abdallah et al., 20GHd
prevent subsequent damages. Since PKC is implidgatdte intracellular Cd handling,
it is worthwhile investigating whether,8 could alter intracellular & handling via

activation of PKC.

Taken together, there is no information so farilabbée regarding the isoforms of
PKC involved in HS preconditioning and how the cardioprotective aigmre conveyed
forwards. Thus in the current chapter, a clospangon on PKC was performed with an
emphasis on its upstream and downstream connedtighs signal transduction pathway

of H,S preconditioning.

4.2 Materials and Methods

4.2.1Experimental protocol
Myocytes were subjected to.8 preconditioning (SP) by incubation with “1@nol/L
NaHS for 30 min. 20 hours later, samples were d&ted for western blotting

experiment or for intracellular &a transient recording. To study the sequence of
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signaling events between PKC activation angreKopening, cells were treated with
glibenclamide (18 mol/L, a blocker of Krp channel) 15 min before and during SP. In
separate experiments, preconditioned cells wergstagd to severe ischemia followed by
10min’s reperfusion with normal medium. Resting*Oaas traced real-time during
ischemia for examination on cytosolic accumulation. Cell lengths before ischemia

and after the onset of reperfusion were comparedvaluation of hypercontracture.

4.2.2 Cell fractionation and western blotting

A cell fractionation technique was adopted from tiberature (Mackay and Mochly-
Rosen, 2001; Weber et al., 2005). After 20h’s iratidm, cardiomyocytes were lysed
with 150 ul ice-cold lysis buffer containing 125mM NaCl, 25mWis pH7.5, 5mM
EDTA, 1% NP-40 and protease inhibitors and shakeice for 1h. The cell lysate was
centrifuged at 1000xg at°@ for 10 min for rough partition between cytosofiad
membrane fractions. The supernatant was recergdfiag 16000xg at°@ for 15min to
get rid of contaminating pellet materials and adkel as cytosolic fraction. The initial
pellets were resuspended in 1Q@Dcell lysis buffer containing 1% triton X-100 and
shaken on ice for another 60min and were then ifeged at 16000xg at’d for 15min.
The second supernatant was collected as membracigofr. Epitopes were exposed by
boiling the protein samples at ®@0water for 5 min. Each fraction was analyzed for
protein content by Bradford assay. Equal amountspuaitein were loaded and
electrophoresedith 10% SDS-polyacrylamide gel and transferredatpolyvinylidene
difluoride membrane (Amersham Biosciences, U.Khe Tnembrane was probed with

antibody against PK&€(Santa Cruz Biotechnology, Inc., California, U.S,A°KCu and
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PKGs (Cell Signaling Technology, Inc., Danvers, U.S.Ajnmunoreactivity was

detectedising an ECL advance western blot detection kit éfgham Biosciences, U.K.).

4.2.3 Measurement of [CAT;

Electrically induced [C4]; transient§E[C&];) were generated by stimulating myocytes
with a stimulator at 0.2 Hz (Grass S88). Caffeingsiced [C4]; transients (C[CE];)
weregenerated by adding Tamol/L caffeine directly to the incubation bufféResting
Cd”" level was recorded during ischemia challenge witheny electrical or caffeine

stimulations.

4.2.4 Measurement of cell length
Cardiomyocytes were placed on the stage of an tiedenicroscope (Nikon TE2000-S).
The cell image was taken with a digital camera @HiKDS-5M-L1) connected to the

microscope with a 20X objective and analyzed witBdocumentation software (Nikon).

4.2.5 Statistical analysis
Values presented are mean + SEM. Statistic compaisvere performed by one-way

ANOVA and bonferroni for post-hoc analysis. Thengiigance level was set at P<0.05.
4.3 Results

4.3.1 SP promoted translocation of PKG,e and 8 to membrane fraction

To determine the activated PKC isoforms in the yklaphase of cardioprotection
induced by SP and IP, subcellular distributionthoée main PKC isoforms present in the
heart,a, € andd, were examined with western blotting experimerits after SP and IP.

As shown in Fig. 4-1, SP induced all three isofooh®KC translocation from cytosol to
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membrane. The membrane/cytosol ratios of RK£L-and 6 abundance increased

approximately two folds in SP group compared with? \group (Fig. 4-1D-F).

Interestingly, IP only induced translocation of RK&nds, but had no effect on PKC

translocation. These data suggest that the SPPan@y employ different subsets of PKC

isoforms to mediate their cardioprotection.
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Figure 4-1. Effects of IP and SP on subcellulatritistion of PKGx (A&D), PKCe (B&E), and
PKGCs (C&F). (A-C) Representatives of five separate eipents for each isoform. (D-F) Gourp
results of membrane/cytosol ratio of PKC isoformuradance. They are calculated by relative
densitometry and normalized to 100% of VP groupe @hata are presented as mean + SEM, n=5,
*P<0.05 **P<0.01 vs VP.
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4.3.2 Katp channel blocker prevented translocation of PKE

Glibenclamide (18 mol/L), a Karp channel blocker, was used to examine whether SP-
induced translocation of PKC isoforms was secondarhe opening of krp channels.

As shown in Fig. 4-2, glibenclamide blocked SP-irehli translocation of PK&Cbut did

not affect translocation of PKkCand PKG@, suggesting that only PKkCGamong the three

isoforms is downstream toale channels in the signaling pathway of SP.
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Figure 4-2. Effects of kp blockers on SP-induced translocation of PKC isofarGlibenclamide was
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4.3.3 SP accelerated SR-Ghuptake rate in a PKC-dependent manner

The decline rate of [G4; is mainly determined by Gauptake to SR VISERCA, which

is responsible for the removal of ~90%*Clromthe cytosol (Bers, 2000). Thus thalf-
decay time) andeg (90% decay time) of E[G]; were measured as indicators of SR
uptake rate. As shown in Figure 4-3, bafhand §, were significantly shortened in SP
group, compared with those observed in VP. Cosmmeat with 3 x 10 mol/L
chelerythrine during SP reversed this effect, satyjgg that SP accelerated the rate of

SR-C&" uptake through a PKC-denpendent pathway.
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Figure 4-3. Effects of SP on SR-Caiptake rate in single ventricular myocytes in fiiesence and
absence of PKC inhibitor. (A) Typical transients BfC&']; in VP, SP and SP+Chelerythrine
(SP+Che). Half-decay timg, (B) and 90% decay timg, (C) of E[C&]; indicate the rate of G
uptake to SR VI8ERCA. The data are presented as mean + SEM, nP)4QL(SP), 7(Che).P<0.05
vs VP, **P<0.01 vs VP, P<0.05 vsSP.""P<0.01 vsSP.
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4.3.4 SP accelerated G4extrusion rate in a PKC-dependent manner

Because caffeine keeps RyR open, SR is unablegteester C& during its application.
The decline of [CH]; therefore depends on €axtrusion through NCX (Sham et al.,
1995). The rate of extrusion can be reflected dxagt of C[CAT; (tso and §0). As shown
in Figure 4-4, SP significantly shortened baghand §o0f the decay of C[Cd];. These
effects were reversed by inhibition of PKC with kemgthrine (3 x 16 mol/L). We also
examined the SR-Ghload by measuring the amplitude of Cf@a since caffeine
depletes the intracellular €astore at a burst. The amplitude did not differwesn

groups, which excluded a less SR*Oaad as a cause of the faster clearing of cytosolic

ca’,
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Figure 4-4. Effects of SP on &aextrusion rate in single ventricular myocytes e tpresence and
absence of PKC inhibitor. (A) Typical transients@ffc&"]; in VP, SP and SP+Chelerythrine (SP+Che)
Half-decay timets, (B) and 90% decay timi, (C) of C[C&"]; indicate the rate of Ghextrusion via
NCX. Amplitude (D) of C[C&]; reflects the C4 load in SR. The data are presented as mean + SEM,
n=13(VP), 9(IP), 13(SP), 8(Che), 12(GlibenP<0.05 vs VP, *P<0.01 vs VP, *P<0.001 vs VP,
"P<0.01 vsSP.

4.3.5 SP attenuated cytosolic Ga accumulation during ischemia in a PKC-
dependent manner

Resting C& elevation was traced during ischemia to investigahether the Ca
handling altered by SP affected the?Caccumulation in the cytoplasm during ischemia
challenge. As shown in Fig. 4-5, the resting?'Cavel in VP increased dramatically

within 15 min of ischemia, indicating a severe?Taccumulation in the cytosol.
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However, the increase of resting Cin SP was limited to a much lower extent.

Pretreatment with chelerythrine during SP dimingstigs effect.
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Figure 4-5. Effects of SP on cytosolic accumulation during ischemia in the presence dsérce

of PKC inhibitor. (A) Typical tracings of restinga& level during 15 min of ischemia challenge in
single cardiomyocytes in VP, SP and SP+Cheleryhri8P+Che). (B) Group results. Data are
presented as the area under th& @&rease curve within 10 min of ischemia and ndized to 100%

of control. Values are mean + SEM, n=6P%0.01 vs VP, P<0.01 vsSP.

4.3.6 SP attenuated myocyte hypercontracture at thenset of reperfusion in a PKC-

dependent manner
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Hypercontracture refers to the sustained maximumtractile activation of myofibrils
resulting from the combination of excessive cytims@ld” accumulatiomluring ischemia
and energy resuppéfter reperfusion (Siegmund et al., 1993). We deiteed cell length
shortening few minutes after the onset of repesfus an attempt to investigate whether
SP may also alleviate hypercontracture. As showifrign 4-6, in VP group myocyte
length was shortened to about half of their inigsigth after reperfusion. SP significantly
attenuated this detrimental shortening and thiscéfivas abolished by inhibition of PKC

with chelerythrine.
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Figure 4-6. Effects of SP on myocyte hypercontnaciit the onset of reperfusion. Mean data
showing the cell lengths before ischemia and afteset of reperfusion in VP, SP and
SP+Chelerythrine (SP+Che). Mean + SEM, n=30~50<8.01 vs VP, "P<0.01 vsSP.

4.4 Discussion

In the current study we found that SP-induced PE&@arm activation accelerates the

rectification of elevated [G4; and thereby increases the susceptibility of canglimytes
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to ischemia-induced €& overload and consequent damages induced by repmrfu
These findings disclose a novel mechanism for $lBdad cardioprotection and also

provide considerable implication for other PKC-tethanti-ischemia interventions.

4.4.1 PKC isoform translocation

Although PKC activation seems to be coupled witle tpjenesis of late phase of
cardioprotection induced by SP, the specific PK&@fasms involved is still unknown.
PKC-u, €, 6 are the three main isoforms expressed in aduli@aryocytes and also the
most important ones involved in cardioprotectiomsshemic preconditioning (Rybin and
Steinberg, 1994; Kawamura et al., 1998). For th&son, we examined the effect of SP
on these three isoforms before ischemia insultschvhiself can stimulate PKC
translocation. We found that,8 preconditioning motivated translocation of theséh
isoforms PKCe, € and 6 to membrane fraction at 20h after preconditioniSgich
translocation prior to ischemia attack may actrasssential step to switch the cells into a
state tolerant to ischemia insults, and failureswéh translocation results in the loss of

cardioprotection as observed in the presence &fGiRhibitor.

Individual PKC isozymes are believed to mediateratt@ristic cell functions, as
upon stimuli they are directed to distinct subdalumembrane regions by isozyme-
specific receptors for activated C kinase (RACKpa@Way and Mochly-Rosen, 2001). By
binding to their specific RACKs the activated isnms are anchored close to their
particular substrates. In the present study, wel@rad IP as a reference model due to its
recognized stimulatory effect on PKC. Intriguinglye found that IP only promoted
PKCe and PKG translocation but not that of PiKCThe discrepancy between SP and IP

suggests that they may employ different subsetKE€ isoforms to convey their
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cardioprotective signals to different subcellulagions, affording probably similar but

not identical cardioprotection.

4.4.2 PKC and Katp

Since HS has been shown to have a direct effect g iKhannels (Zhao et al., 2001,
Tang et al., 2005), it raises the question whefiieinduced PKC activation is secondary
to the opening of Krp channels. Unexpectedly, we observed that blocladEarp
channel only diminished the SP-induced translooatib PKC but failed to affect the
translocation of PK& andé. Thus, Kyp channel opening may only be necessary for

PKCe activation in the SP signaling pathway.

It is until recently that individual PKC isoformsewe found located differently in
relation to Kizrp channels in the cardioprotective signaling pathw&jassouna
demonstrated that PKQs located upstream whereas RKIG downstream to mitokp
channel in IP signaling pathway (Hassouna et &Q42 This implies a considerable
diversity of the signaling mechanisms whereby PK&farms are activated. Since PKC
can also be activated by other signaling moledikesNO or C&" (Miyawaki and Ashraf,
1997; Ping et al., 1999), more studies are wardarttdest whether SP induces activation

of PKCo and PKG through provoking the release of these signalioteoules.

4.4.3 PKC and intracellular C&* handling

Of great importance, we elucidated the mechanism the SP-activated PKC mediates
the cardioprotection. By monitoring the resting?Cavel in single cardiomyocytes, we
observed that SP lowered elevation of {Gaduring ischemia in a PKC-dependant

manner. Such a timely rectification on elevated?{zduring ischemia challenge could
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be therapeutically important, as uncontrolled eievain [C&*]; could induce irreversible
injuries like mitochondria dysfunction (Minezaki at, 1994), membrane degradation
and contractile derangement (Gross et al., 1999)the ischemia is followed by
reperfusion, the myocytes will exhibit hyperconttae at the onset of reperfusion due to
massive stimulation on the contractile machineryabyumulated G4 (Siegmund et al.,
1993). In perfused myocardium, this hypercontraiarmanifested by contraction band
necrosis (Ganote, 1983). Even if the necrotic myaican can be replaced by scar tissues
in a subsequent remodeling process, the akindtiotic tissue will permanently impair
the pumping function of the heart and when substhehough will lead to heart failure

(Richardson et al., 1996).

To further corroborate the effect of,$ on resting Ca during ischemia, we
examined the myocyte hypercontracture at the oofsetperfusion. Indeed, SP reduced
the development of myocyte hypercontracture thraaudgh<C-dependent pathway. These
beneficial effects triggered by SP and mediatedPBYC could in turn at least partly
account for the cardioprotection observed on celbility, cell morphology, and cell
function. It is also predictable that this limitai on development of Eaoverloading
and hypercontracture in single cells would achidugher significant benefits by

preserving contractile function in the intact heart

Previous studies have demonstrated an effectiveoapp to attenuate myocyte
hypercontracture by increasing SERCA activity (Akataet al., 2005). Since SR uptake
through SERCA presents the dominant route fof' @moval in cardiomyocytes, it is
plausible that this reduced hypercontracture istdue faster C& clearing from cytosol

before reperfusion. Enlightened by this finding, examined the SR- auptake rate as
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well as the minor mechanism for €aemoval, i.e. extrusion via NCX. We found that SP
accelerated the clearing rate through both of thres#es. Again, all these beneficial
effects induced by SP were reversed by inhibitiolPKC, implying that PKC may

phosphorylate these calcium handling proteins argrave their function.

In conclusion, the present study significantly athes our understanding on the SP-
induced cardioprotection by delineating the esaéntle of PKC in the context of
signaling pathway. The results demonstrate that aBfvates PK@, ¢ and d in
cardiomyocytes, among which only activation of RKE secondary to the A& channel
opening. Such PKC activation accelerates cytos@&* clearing and prevents
development of G overloading and myocyte hypercontracture durirghésnia and

reperfusion.
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Chapter 5 H,S preconditioning induces late cardioprotection ira rat

model of myocardial infarction

5.1 Introduction

Myocardial infarction (Ml) is the common presentatiof ischemic heart disease. To test
the cardioprotective effect of .8 in intact animals, we established a rat modéibby
occluding the left anterior descending coronargrgr{LAD). To pave way for clinical
studies, we investigated and fine-tuned the efédcH,S preconditioning and further
made comparison between different administratigmmes to investigate whether post-
MI treatment with HS could produce comparable infarct-limiting effacid whether a

combination of both could provide additional praieac.

5.2 Materials and Methods

5.2.1 Animals

The study protocol was approved by the Instituticki@mal Care and Use Committees
(IACUC) of National University of Singapore. Lefemtricular (LV) MI was created in 7-
week-old male Sprague-Dawley rats. The rat wasthegsed by an intraperitoneal
injection of ketamine (70mg/kg body weight) andaarhe (4.6mg/kg body weight). A 3-
cm catheter was inserted into the animal’'s tracmehthe animal was ventilated with a
Havard respirator at 85 strokes per minute andl tiddume of 2.15 cc. After
thoracotomy at the fourth intercostal space, tlatheas exteriorized and the left anterior
descending coronary artery (LAD) was permanentgted using 6-0 suture. The heart

was then placed back to normal position and thetalas closed with 3-0 suture.
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5.2.2 Experimental design

The protocols were shown in Fig. 5-1. Rats igSHpreconditioning group received a
single bolus of NaHS (a 43 donor) one day before surgery. NaHS was given
intraperitoneally at doses of 0.1, 1, 3, 10, 30 |dkgabody weight. Rats in ¥ post-Ml
treatment group received an intraperitoneal bofusalHS immediately after surgery and
once a day for two more days. NaHS was given at1).10 pmol/kg body weight. Rats
in the combo group were treated with a combinatbrpreconditioning and post-Ml
treatment, that is, a bolus of NaHS one day befargery plus one bolus a day for 3 days
after surgery. Each group was compared with coomdpnt vehicle-treated MI, in which
rats received surgery and saline injection in palralith NaHS administration. For the
time course study (Fig. 5-3A), rats received sueget day, 3 days or 5 days after NaHS

administration (1pmol/kg).
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Figure 5-1. Experimental protocols. (Ay$ipreconditioning group: rats received a singleibaif
NaHS (a HS donor) one day before surgery; (B)SHpost-treatment group: rats received an
intraperitoneal bolus of NaHS immediately aftergany and once daily for two more days; (C)
Combo treatment group: rats were treated with ab@eation of HS preconditioning and post-Ml
treatment, namely, a bolus of NaHS given once dedly;n one day before till 3 days after surgery.

5.2.3 Assessment of infarct size

Infarct size and ischemic risk area were determingging Evans blue and
triphenyltetrazolium chloride (TTC) staining. Thre#ays after MI, animals were
euthanized, the heart excised, and stained wi20.dvans blue define the area at risk

(AAR; the nonperfused and hence unstained myocaxdiihe heart was then sliced into
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sections andhcubated in 1% TTC in PBS for 15 minutesdefine the area of infarction
(INF; nonviable thus unstained myocardium). Infaiee, ventricle internal diameter and

anterior wall thickneswere assessed using computerized planimetry.

5.2.4 Statistics
All data are expressed as a mean = SEM. Statiseecs performed with one-way
ANOVA followed by a Bonferroni post-hoc test.FAvalue less than 0.05 denotes a

statistically significant difference.

5.3 Results

5.3.1 AAR/LV was consistent throughout the study

Table 1 lists the number of animals in each graug the correspondent ratio of area at
risk to total left ventricle area (AAR/LV). No sidicant difference in AAR/LV was

observed across groups.

Table 1. List of experimental groups with theirpestive animal numbers and area at

risk, expressed as the percentage of the lefticen{AAR/LV).

Study Group N AAR/LV (%)
Preconditioning MI-vehicle 7 526+2.8

NaHS Pre 0.1 7 50.6 +3.0

NaHS Pre 1 8 50.5%£45

NaHS Pre 3 7 529+4.0

NaHS Pre 10 7 52.3+1.7



Post-treatment

Combo treatment

Time course study

NaHS Pre 30

MI-vehicle

NaHS Post 0.1

NaHS Post 1

NaHS Post 10

MI-vehicle

NaHS Combo 0.1

NaHS Combo 1

NaHS Combo 10

MlI-vehicle (1 day)

NaHS pre 1 (1 day)

MiI-vehicle (3 day)

NaHS pre 1 (3 day)

Mi-vehicle (5 day)

NaHS pre 1 (5 day)

10

96

48.0+2.9

51.8+3.3

496+25

50.2+29

50.8 +3.8

504 %25

51.2+3.2

48.8 £ 3.6

52.4+3.9

50.9+25

494 +£4.2

53.4+3.0

50.7 +3.8

51.3+3.9

49.7+ 2.7
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5.3.2 HS preconditioning reduced infarct size, LV dilataton and wall thinning in
the heart undergoing Ml

A single bolus of NaHS was administered one dayieeMI| (Fig. 5-1A). As shown in
Fig. 5-2B, NaHS at 0.1, 1, 3, and 10umol/kg siguaifitly decreased infarct size per AAR
as compared with Ml-vehicle group. The optimal effevas found in rats receiving 1
pmol/kg NaHS, which displayed a 78% reduction ifaict size. Representative mid-
ventricular cross sections of Ml-vehicle andSHpreconditioning at 1 umol/kg were
shown in Fig. 5-2A. b preconditioning also remarkably reduced LV dtiataand wall
thinning, as manifested by the decreased LV intatizaneter (Fig. 5-2C) and increased
anterior wall thickness (Fig. 5-2D) compared witH-Wéhicle. Similar dose-response
curves were observed, with significant effects fbumithin a dose range of 0.1~3

pmol/kg NaHS.
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Figure 5-2. Effect of k5 preconditioning on infarct size and LV geome{) Representative
mid-myocardial sections of Ml-vehicle and$ipreconditioning. (B-D) Dose-dependent effect of
NaHS (0.1~30 umol/kg) on infarct size (B), left tréele internal diameter (C), and left ventricle
anterior wall thickness (D). The data are preseatednean + SEM. *<0.05, **, P<0.01, ***
P<0.001vs. Ml-vehicle. N per group is shown in Table
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5.3.3 The protection of HS preconditioning lasted at least 3 days after NaHS
administration

Rats preconditioned with NaHS (1 umol/kg) were satgd to coronary occlusion on day
1, day 3 or day 5 after NaHS administration (FiggA). Strong infarct-limiting effects
were observed on day 1 and day 3 (Fig. 5-3B), atdig that the protection lasted at

least 3 days after the preconditioning stimulus.

A i bolus of MaHS or saline

s

olil-vehicle ® }MaHE precondihoning (1 pmoldog)

T

Infarctsize {® o AAR)

1 day 3 days 5 days

Figure 5-3. Time course of the cardioprotectionucetl by HS preconditioning. (A) Experimental
protocol. (B) Infarct size in rats subjected to & day 1, day 3 and day 5. The data are presasted
mean * SEM. **P<0.01, *** P<0.001 vs. correspondent MI-vehicle. N per groughiswn in Table 1.
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5.3.4 The protection of HS preconditioning could not be replaced with HS post-MI
treatment

Based on the effective dose range gEkpreconditioning, we examined the effect gEH
post-treatment at 0.1, 1, and 10 umol/kg NaHS givece daily for 3 days after the Mi
surgery (Fig. 5-1B). Rats receiving 1 and 10 ungplNaHS also displayed a significant
decrease in infarct size compared with correspandiirvehicle group (Fig. 5-4A).
However, when compared with,8 preconditioning group at the same dose, the
infarct/AAR was significantly lower in preconditiog groups than those in post-
treatment groups. At the optimal dose of 1 umolKgHS for both groups, 19
preconditioning limited the infarct size to 13.14#3% per AAR, representing a 78%
reduction, while HS post-treatment reduced the infarct size only &% 30 37.5 + 3.1%
per AAR. In addition, none of the doses in posatment group produced significant
effect on LV dilatation and wall thinning, as indted by LV internal diameter (Fig. 5-4B)
and wall thickness (Fig. 5-4C). In contrastSHpreconditioning significantly decreased
LV internal diameter and increased wall thicknesemcompared with either MI-vehicle

group or HS post-treatment at 1 pumol/kg.

We also tested whether a combination @&hpreconditioning and post-MI treatment
could produce a synergic cardioprotection. Rathécombo group received NaHS (0.1,
1, or 10 pmol/kg) injection once daily from 1 dagfdre till 3 days after Ml surgery (Fig.
5-1C). As shown in Fig. 5-4A, a combo treatmentNafHS at all doses significantly
decreased infarct size compared with correspondénehicle group. When comparing
at the same dose collaterally, the infarct/AAR amdo group at 0.1 and 1 pmol/kg were

significantly lower than that in post-treatment gpobut comparable to that in,8l
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preconditioning group. Likewise, a similar trendsnabserved when assessing the LV
parameters (Fig. 5-4 B&C). In addition, no sigraint difference in infarct size and LV
geometry was observed across the three Mi-vehiobeipg injected with the three
different administration regimes. These resultsciai@ that the infarct-limiting effect of
H,S preconditioning superseded that produced by tpestment when both were
administered. Continuous treatment after Ml did meinforce the effect of }$

preconditioning and thus seems redundant.
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Figure 5-4. Comparison on infarct size (A) and LiMernal diameter (B) and LV anterior wall
thickness (C) among 43 preconditioning, post-MI treatment and a combdmabf both (combo).
NaHS was given at 0.1, 1, 10 umol/kg for each grdine experimental protocol is shown in Figure
1. The data are presented as mean + SEN<6.05, **, P<0.01, *** P<0.001 vs. correspondent
MI-vehicle. N per group is shown in Table 1.
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5.4 Discussion

The present study demonstrated inianvivo rat model that brief exposure to,%l
restrains the extent of myocardial infarction tbaturs in the next 72 hours through a
PKC-dependent mechanism. Post-MI treatment with SlaHthe same doses for 3 days
did not produce as pronounced infarct-limiting effas observed in the preconditioning
group. A combination of both did not produce additil benefit more than
preconditioning alone. These results suggest tmateffect of preconditioning is not
replaceable with post-MI treatment even with mudtipdministrations. The access to
preconditioning, by and large, determines the auioof the patients. Continuous

treatment after Ml is not necessary when the adoeggeconditioning has been secured.

As always, studies in intact animals are of greapdrtance to bridge the novel
discoveries in basic research to clinical use. &iHgS has been proposed to be both
cytoprotective (Kimura and Kimura, 2004; Whitemdralke, 2004; Whiteman et al, 2005)
and cytotoxic (Deplancke and Gaskins, 2003; Yangl.et2006), depending on the cell
type and concentration used, fine-tuning the NaldSeds particularly crucial im vivo
experiments. Inappropriate selection of dose ramgg lead to misappraisal of its
therapeutic value or even to contradictory resuitse prevailing dose of sulfide donor
used in the most of recent cardiovascular studiesbove 10 pmol/kg body weight per
day (Cai et al., 2007; Meng et al., 2007; Sivaragl., 2007; Zhu et al., 2007). However,
we demonstrated in a preconditioning model thaihgles bolus of NaHS at 0.1~1umol
/kg was sufficient to afford marked protection aghi MI. Increasing the dose from

1umol /kg only decreased the protection.
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We also performed a time course study to deterritireduration of the protection.
Sivarajah and colleagues (Sivarajah et al., 200@)ved that NaHS pretreatment, 15 min
before MI, produced immediate protection, while feend that HS preconditioning
produced late protection which lasted at least ys.daThe vastly different duration of
protection supports the concept that the late pbaggeconditioning may have greater
clinical usefulness (Bolli, 2000). It also meritarther study to investigate whether
continuous administration of NaHS at 48-72h intexvavill extend the protection
duration and whether repeated administration walutt in the maintenance of a

defensive phenotype.

Although preconditioning is inferior to treatmemnt terms of practical convenience,
the ultimate goal should be identification and iempént of the most effective approach
to intervene with MI. Elrod and colleagues recendlgorted that k& donor administered
at the time of reperfusion significantly decreasaethrct size (Elrod et al.,, 2007).
However, no comparison has so far been conducteweba the effectiveness of,8l
preconditioning and post-MI treatment. Our currestudy evidenced that A3
preconditioning produced far stronger infarct-limgt effects than b6 post-treatment in
this model, indicating that the effect of precoimiing with a single bolus of NaHS
could not be replaced with multiple post-MI admirason of the sulfide donor. This
result bears great clinical implication for thosetgmtial patients at high risk of
myocardial infarction. Brief exposure to low dodeHsS may make them survive a Ml
which would otherwise be a lethal attack. Howeweunch less benefit could be provided
by H,S treatment after the attack has occurred. To antigte above finding, we treated

the rats with a combination of both preconditioniagd post-MI treatment. The
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combined treatment produced an infarct-sparingceffemparable to that produced by
H,S preconditioning alone, which further underscdahesimportance of access to NaHS

before the attack.

In the current study, we also examined the effédt«£5 on LV chamber dilatation
and wall thinning by assessing the LV internal deééen and anterior wall thickness.
Changes in these parameters almost followed the $eend as infarct size. It is worthy
of note that HS post-treatment did not reduce LV dilatation anall whinning to a
statistically significant extent in spite of deceasinfarct size, while preconditioning was
able to effectively limit infarction, chamber ddéion and ventricle wall thinning at the
same time. These effects obF preconditioning on ventricular geometry hint dtdre

preserved LV pump function and a reduced chang®si-MI ventricular rupture.

With accumulating data supporting its protectivieef, H,S possesses the potential to
be developed into an inhaled gas or a parentefattable, which could actualize the
power of ischemic preconditioning without feastyilproblem. Importantly, the dose of
H,S we identified most effective in the preconditimnimodel is over 250 folds lower
than its L0y value (Warenycia et al., 1989). Therefore, forhigh-risk population, brief

exposure to b5 every 3 days represents a cost-effective preMenteasure.

In conclusion, the current study provides the fesidence that 1) preconditioning
with low concentration of kS produces delayed cardioprotection against myadard
infarction and 2) KS preconditioning was far more effective than pgos&tment in

limiting infarct size, LV dilatation and wall thimmg.



106

Chapter 6 General discussion

The whole investigation profiled the role of hydeogsulfide in the cardioprotection
against ischemia and reperfusion insult, focusingite potential as a preconditioning
agent. The evidence from bathmvitro andin vivo studies consistently pointing towards
that HS preconditioning produces potent cardioprotecéiffects, which translated into
decreased cell death, prevention of intracelluciam overload, preserved contractile
function and restraint of infarct size. The dosgpmnse curve, both in isolated
cardiomyocytes and in intact animal, is bell-shapating the dose of sulfide above the

optimal dose results in diminished therapeuticcaffy.

Using cardiomyocytes, we also identified severakasial signaling components and
intracellular events underlying the protection effed by HS preconditioning. Fig. 6-1
summarizes the current understanding 6 freconditioning by proposing a signaling
pathway: with free passage through the plasma mamebr HS directly opens
sarcolemmal Krp channel which activates PKC Or through some unknown
mechanisms, t§ could also directly or indirectly stimulate PK@nd PKG. Activated
PKC isoforms then translocate from cytosol to memnbrfraction of the cell, where
calcium handling proteins such as SERCA and NCXl@sated. PKC may enhance the
function of these proteins whereby the cytosoliciaan clearing is accelerated. During
ischemia and reperfusion, fast calcium clearingultesin attenuated calcium
accumulation in the cytosol and reduced hypercohira of the myocytes, both of which

contribute to the decrease in infarct size andgowasion of contractile function.
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However, we also bear in mind that the whole sdenafr the signal transduction
could be much more complicated. The signaling pathautlined above is by no means
the only goings-on after 43 preconditioning. Taking PKC as a nodal pointpactrum
of endogenous molecules, like NO, adenosine, amel fadicals, could be its upstream
triggers, while its downstream targets could rainge mitogen-activated protein kinases,
heat shock proteins to mitochondria proteins (Saremud Kitakaze, 2004). It is more
likely to be a signal network than single pathwalick transforms the extracellular

stimulus of HS into the final protection.
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Figure 6-1. The proposed signaling pathway for I8Rited cardioprotection (the yellow route)hSH
activates different PKC isoforms directly (dashewk) or indirectly though the opening ofy% or
other unknown mechanisms (dashed line). The aetiv@®KC isoforms stimulate the £&andling
proteins (i.e. NCX and SERCA) and thereby facititttie clearing of cytosolic €a During ischemia,
the faster clearing of cytosolic €ainduced by SP attenuates the’Caccumulation and reduces
hypercontracture.
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In the present study, we observed three PKC isdforactivated by bB
preconditioning, but the inhibitor chelerythrineutsh not distinguish the one or ones that
is necessary for the genesis of the late cardieptioh. It is likely that different isoforms
act on different substrates at various subcellsltgs and afford the protection from
diverse aspects (Mackay and Mochly-Rosen, 199%igAsg specific roles to each PKC
isoform may depend on the availability of isoforpesific antagonists, siRNA or PKC-

isoform knockout animals.

Using intact animal model, we also demonstrated Hy& preconditioning could
provide much stronger protection thanSHpost-treatment. This finding prompts us to
reason that the mechanisms underlying preconditgoand post-treatment are different.
H,S preconditioning is more likely to protect by sshihg the heart to a defensive state
against ischemia insult. The opening oftK channels, activation of PKC isoforms as
well as altered intracellular calcium handling aseomplished prior to the attack. Thus
even though exogenous$iwas not present at the time of attack, the ptioteevas still
well executed. In contrast, without,8 preconditioning, the endogenous defensive
system could be overwhelmed by the injuries calsel@thal ischemia, and supplement
with exogenous b6 after the attack could only provide limited bandthe effect of HS
-posttreatment may only rely on the ability of gidfto reduce inflammatory responses
(Zanardo et al., 2006) and to neutralize cyotoxiactive species such as peroxynitrite
(Whiteman et al., 2004), which may relieve the axik stress to some extent but not

likely to reverse infract myocardiums back to nokma

Another important question is that the locaB-toncentration achieved using sulfide

donor is unknown. The basab$llevel in the rat serum was reported to be ~46u an
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physiological range was assumed to be within 50~1B) depending on the tissue of
interest (Wang, 2002). However, in our vivo study, the dose of 43 that produced
maximum protection was at 1pumol/kg, which may iasee the circulating ¥ by
10~20uM (the blood volume of a 250g rat is ~15.5m@e(and Blaufox, 1985). If there
is a substantial background level of sulfide, h@witi possible that relatively small
increment can produce so significant biologicaleef$? One possibility is that the
biological sulfide-eliminating systems might getwsated by sudden exposure to sulfide,
and the non-metabolized sulfide locally in the heaggers the downstream biological

effects.

However, evidence is accumulating in favor of aerothossibility—the exact free
sulfide baseline levels in blood and tissues aobaily lower than the reported levels.
Although we do not question the detection of endoges HS, we must note that the
reported baseline concentration obSHis high enough to emit the characteristic
unpleasant b6 smell, whereas the blood samples actually dolndtvo recent reviews
by Li (Li and Moore, 2008) and Szabd (Szabd, 2006th authors mentioned that the
colorimetric assays or ion selective electrodeyassaed to measure,& concentrations
in most studies are likely to liberate sulfide frote bound forms, thereby generating
concentrations that are likely to represent a méxtf free and bound sulfide (Hannestad
et al., 1989; Togawa et al., 1992; Ogasawara ¢t18P3). Using a lately-developed
polarographic KHS sensor, Whitfield and colleagues have recentippemised sulfide
concentration in vertebrate blood (Whitfield et &008). They found that 43 gas was
undetectable (<100nM) in blood from numerous ansmahcluding lamprey, trout,

mouse, rat, pig and cow. Interestingly, exogenouS Was also rapidly removed from
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blood or plasma. Indeed, as a highly reactive mied+S could either be broken down
rapidly by enzymes, sequestered by binding to hgksbm, or react chemically with a
number of species abundant in tissues, includipgxide radical, hydrogen peroxide,
peroxynitrite and/or hypochlorite (Li and Moore,(8). The key issue that needs to be
addressed in future studies is how the fleetingsgmee of free sulfide achieved

subsequent lasting biological effects.

To date, simplesulfide salts, most commonly NaHS, have been tb®-fdleasing
drugs used in mostological experiments, including our present studgHS is known
to release kB instantaneously in aqueous solution. Becauseetbase of endogenous
H,S from cells is likely to occur in lessmounts and at a much slower r&taHS may
not mimic the biological effects of naturaflyoduced HS. However, based on findings
in the current study, NaHS is able to produce botmediate and delayed protection
against cardiac ischemia, even if it only trandjemicreases the circulating.8 levels.
Thus for the preconditioning purpose, NaHS quaifias an economical option.
Developmenbf organic compounds that slowly release fre& ldver extended periods
of time could be more useful for treating patien#$io fail to access to 1%
preconditioning before myocardial infarction occardreating other diseases where long

period of HS treatment has shown therapeutic effects.

Another potential area is the development gblds an inhaled gas or as a parenteral
injectable. Inhaled NO has set a precedent for Idpugent of medical gases. NO was
also first known as a toxic gas and is currentlgraped for use in infants with primary
pulmonary hypertensiofKinsella and Abman, 2005; Hillier, 2003). Howevdhe

unpleasant odor of 4 may pose more problems for administration, whichuld
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necessitate the implementation of appropriate trapgystems to prevent from spreading
into environment and exposure of medical persoriSehbd, 2007). With enteral or
parenteral formulations, odor would not create ablam, but manufacturing and
formulation issues remains challenging comparet winventional chemical compound.
In addition, animal safety data are still lackingthnrespect to parenteral or enteral
administration of HS. Although sulfide is an endogenous substancegxgenous

sulfide delivery systems would be required to patsisgent safety and efficacy tests in

preclinical animal studies before progression miman studies.
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Chapter 7 Conclusion

The current study demonstrated thaiSHis both necessary and sufficient for the
development of early and late phases of cardioptiote against ischemia. Cells or

animals preconditioned with 8 displays a phenotype tolerant to experimenthleista

or myocardial infarction, manifested by the deceelasell death or infarct size. Such
protection is mediated by sarcolemmalriKchannels, NO and PKC. Activation of PKC
results in accelerated cytosolic Caclearing, which prevents development of?’Ca

overloading and myocyte hypercontracture duringhesaia/reperfusion insult. These

findings demonstrate the potential opSHpreconditioning as an effective intervention
approach against ischemic heart disease. For thgh-risk population, bB

preconditioning represents a realistic and costetiffe prevention measurement.
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