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SUMMARY 
 

Ischemic heart disease is the leading cause of death in the western society and is becoming 

increasingly a major health problem in developing countries. In the current study, the role of 

hydrogen sulfide (H2S) in the cardioprotection against ischemic injury was investigated in both 

in vitro and in vivo models.  

The effects of endogenous and exogenous H2S were first examined in isolated adult rat 

cardiomyocytes. Endogenous H2S production was found to be suppressed in cardiomyocytes 

subjected to lethal ischemia. Preconditioning the cells with brief ischemia partly restored 

endogenous H2S level. Inhibition of H2S biosynthesis blocked the early and late cardioprotection 

induced by ischemic preconditioning, indicating that endogenous H2S was necessary for the 

development of both early and late cardioprotection of ischemic preconditioning. To examine the 

effect of exogenous H2S, cardiomyocytes were preconditioned with a H2S donor, NaHS, at 

concentrations of 10-6 to 10-3 mol/L. H2S preconditioning produced a concentration-dependent 

protection against ischemia-caused cell death, morphology change and impairment on cell 

function. A time course study showed that H2S-induced cardioprotection occurred in 2 time 

windows (early phase, ~1 h, and late phase, 16-28 h) and was effective to counteract different 

periods of ischemia and reperfusion. The late cardioprotection was blocked in the presence of a 

sarcolemmal KATP channel blocker, a nitric oxide synthase inhibitor or a PKC inhibitor, 

suggesting their involvement in the signaling pathway of H2S preconditioning. Western blotting 

analysis confirmed that H2S preconditioning activated three isoforms of PKC, α, ε and δ. The 

activated PKC mediated the acceleration of cytosolic Ca2+ clearing which in turn prevented 

cytosolic Ca2+ accumulation and myocytes hypercontracture during ischemia and reperfusion.   
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In a rat model of myocardial infarction, the effect of H2S was examined in vivo with 

intraperitoneal injection of NaHS. Assessment of infarct size revealed that a single bolus of 

NaHS administered one day before MI reduced infarct size by 78% at the optimal dose of 

1µmol/kg, whereas rats receiving three boluses of NaHS once per day after MI only displayed a 

maximum reduction of 38% in infarct size. A combined treatment of both preconditioning and 

post-treatment did not produce stronger protection than that produced by H2S preconditioning 

alone. Furthermore, H2S preconditioning also remarkably reduced LV dilatation and wall 

thinning, as manifested by LV internal diameter and anterior wall thickness.  

In conclusion, the current study has demonstrated that H2S is a potent cardioprotective agent 

against ischemic injury. H2S preconditioning may represent an effective and promising 

intervention for ischemic heart disease.  
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Chapter 1 Introduction  

1.1 General Overview  

Ischemic heart disease, mainly manifested by myocardial infarction, is a syndrome 

characterized by high mortality, frequent hospitalization and reduced life quality. As a 

global health problem, ischemic heart disease is cited as the leading cause of death in 13 

countries, primarily in US and most European countries (American Heart Association, 

2008). In Singapore, ischemic heart disease accounts for 18.5% of total death, ranked as 

the second most common cause of mortality in 2006 (Ministry of Health, 2006).  

Despite remarkable advances in basic science and clinical studies, preventing and 

reversing ischemic heart disease remains a great challenge to scientists and clinicians 

working for the health of millions of patients worldwide. In the 20th century, classical 

physiology studies provided valuable insight into the pathophysiology of myocardial 

ischemia and reperfusion. Next to reperfusion therapy, preconditioning of the heart with 

nonlethal ischemic episodes emerged in the late 1980s as a promising means to limit 

damage by myocardial infarction. It then became clear that the cardioprotective effect of 

preconditioning is mediated by certain signal transduction molecules. Elucidating the 

intracellular signal transduction mediated by these molecules allowed the identification of 

pharmacological agents that can mimic the cardioprotection without ischemia. Studies 

driven by this particular interest have derived a special field in the cardioprotection called 

pharmacological preconditioning and translation of the basic science findings from this 

field into clinical use is yielding encouraging results.    
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Over the past decades, the focus of research in cardioprotection against myocardial 

ischemia has shifted from physiology and biochemical studies at whole organ level to 

molecular studies at organelle and intracellular level. The use of biochemistry, cellular 

and molecular biology, genomics, and proteomics has become more important to identify 

the signaling complexes mediating cardioprotection against I/R injury. It is expected that 

utilization of these technologies will bring a better understanding of the progression of 

the disease and enable the researchers to develop more effective interventions for 

ischemic heart disease.  

1.2 Ischemic heart disease  

1.2.1 Epidemiology  

Ischemic heart disease, also called coronary heart disease, is the leading cause of death in 

western society, claiming hundreds of thousands of lives each year. In the United States, 

for instance, some 8,700,000 men and 7,300,000 women are living with ischemic heart 

disease (American Heart Association, 2008). Every year, an estimated 920,000 people 

suffer a new or recurrent coronary attack, and about 38% of them die as a result of the 

attack (American Heart Association, 2008). In the developing countries, the death rate 

from ischemic heart disease is third to AIDS and lower respiratory infections (CGIRS, 

2006). The World health organization (WHO) predicts that ischemic heart disease will 

cause 11.1 million deaths globally in 2020, becoming the top killer of humans in the 

whole world (World Health Organization web site, www.who.int/ncd/cvd).  

1.2.2 Risk factors  

Atherosclerosis is a major cause of ischemic heart disease. The risk factors for 

atherosclerosis are generally those for ischemic heart disease. Extensive clinical and 
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statistical studies have identified several factors that significantly increase the risk of 

coronary heart disease (American Heart Association web site, 

http://www.americanheart.org/presenter.jhtml?identifier=4726). Some of the factors 

cannot be changed, including older age, male gender, race and heredity, while many 

others are modifiable, like tobacco smoke, high blood cholesterol, high blood pressure, 

physical inactivity, obesity and diabetes mellitus, all of which can be treated or controlled 

either by changing lifestyle or taking medicine.  

1.2.3 Pathology 

Myocardial infarction (MI) is a common presentation of ischemic heart disease. A 

myocardial infarction occurs when an atherosclerotic plaque that slowly builds up in the 

lumen of a coronary artery suddenly ruptures and blocks the blood flow downstream. The 

formation of atherosclerotic plaque is a chronic inflammatory response in the walls of 

arteries, in large part due to the accumulation of white blood cells and low density 

lipoproteins (LDL, the proteins carrying cholesterol and triglycerides). When LDL gets 

through an artery, oxygen free radicals react with it and form oxidized-LDL, which then 

attracts macrophages and T-lymphocytes. After these white blood cells take up large 

amounts of cholesterol, they are called foam cells. When foam cells die, their contents are 

released, which attracts more macrophages and creates an extracellular lipid core in the 

inner surface of atherosclerotic plaque. Conversely, the outer, older portions of the plaque 

become calcified and stiffer over time. After decades of progression, these plaques may 

rupture, activate the blood clotting system and lead to the formation of a thrombus, which 

obstructs blood flow acutely. Upon the obstruction, downstream myocardium is starved 

of oxygen and nutrients, where myocardial infarction develops. Most individuals with 
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coronary heart disease show no evidence of narrowed artery for decades until the disease 

progresses to the advanced state when the first symptom, often a "sudden" heart attack, 

finally arise (American Heart Association, 2008).  

The myocardium can tolerate brief periods (up to 15 minutes) of severe myocardial 

ischemia without resulting cardiomyocyte death (Buja, 1998). If impaired blood flow 

lasts more than 20-30 minutes, it will usually initiate irreversible cell injury (infarction). 

With increasing duration of ischemia, greater cardiomyocyte damage could develop upon 

a re-established blood flow to the blocked heart area, termed reperfusion injury (Yellon 

and Baxter, 2000). The intracellular events of ischemia and reperfusion injury will be 

discussed in detailed in the session 1.2.6 “Myocardial ischemia and reperfusion injury”.  

1.2.4 Clinical features and diagnosis   

The diagnosis of cardiac ischemia is usually made by integrating the symptoms and the 

results from physical examinations with biomarker, electrocardiography (ECG) or other 

imaging techniques (Antman et al., 2004). Chest pain is the most common symptom of 

acute myocardial infarction and is often described as a sensation of tightness, pressure, or 

squeezing. Chest pain due to ischemia of the heart muscle is termed angina pectoris.  

Cardiac biomarkers are proteins released into the bloodstream from the damaged 

myocytes, such as myoglobin, cardiac troponin T and I, creatine kinase (CK), lactate 

dehydrogenase (LDH) and so on. Myocardial necrosis can be recognized when blood 

levels of specific biomarkers are increased. Disproportional elevation of the MB subtype 

of the enzyme CK was found very specific for myocardial injury. Elevated troponins in 

the setting of chest pain may also indicate a high likelihood of a myocardial infarction 

(Aviles et al., 2002). 
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Electrocardiography plays an important role in the diagnosis of patients with 

suspected myocardial infarction (Thygesen et al., 2007). The acute or evolving changes 

in the ST-T waveforms and the Q-waves allow the clinician to date the event, suggest the 

infarct-related artery and estimate the amount of myocardium at risk. The earliest 

manifestations of myocardial ischemia are typical T waves and ST segment changes. As 

the myocardial infarction evolves, there may be loss of R wave height and development 

of pathological Q waves.  

Non-invasive imaging is also useful in diagnosis and characterization of myocardial 

infarction with the ability to detect wall abnormities (Thygesen et al., 2007). Commonly 

used imaging techniques in acute and chronic infarction are echocardiography, 

radionuclide ventriculography and magnetic resonance imaging (MRI). 

Echocardiography is an excellent real-time imaging technique with strength in the 

assessment of wall thickness, thickening and motion at rest. Radionuclide imaging allows 

viable myocytes to be visualized directly, presenting the only commonly available direct 

method of assessing viability. Cardiovascular MRI is well-validated standard for the 

assessment of myocardial function with high spatial resolution and moderate temporal 

resolution. It is, however, more cumbersome and less used in an acute setting.  

1.2.5 Complications 

Life-threatening complications may occur immediately following the heart attack. These 

include pulmonary congestion, ventricular rupture, arrhythmia, pericarditis and 

cardiogenic shock (Antman et al., 2004). A chronic remodeling progress may also start 

from the injured site and ultimately leads to heart failure.   
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1.2.6 Myocardial ischemia and reperfusion (I/R) injury 

1.2.6.1 Cellular injury 

Intensive investigation over decades has provided a detailed understanding of the 

complexity of the response of myocardium to an ischemic insult. Myocardial ischemia 

results in a characteristic pattern of metabolic and ultrastructural changes that lead to 

irreversible injury. Upon the interruption of oxygen supply, mitochondrial oxidative 

phosphorylation rapidly stops, resulting loss of the major source of ATP production for 

energy metabolism. A compensatory increase in anaerobic glycolysis for ATP production 

leads to the accumulation of hydrogen ions and lactate (Buja, 2005). The resultant 

intracellular acidosis causes alterations in ion transport in the sarcolemma and organellar 

membranes (Buja et al., 1988) (Thandroyen et al., 1992). Initially, there is increased K+ 

efflux related to an increased osmotic load due to the accumulation of metabolites and 

inorganic phosphate. With a substantial decline in ATP, the Na+, K+-ATPase is inhibited, 

resulting in a further decline of K+ and an increase in Na+. Intracellular acidosis also 

activates the sarcolemmal Na+–H+ antiport (Yellon and Baxter, 2000; Karmazyn, 1999), 

which facilitates proton extrusion in exchange for Na+. The accumulated Na+ in turn 

activates Na+–Ca2+ exchanger which extrudes Na+ and brings in Ca2+. The resultant 

cytosolic loading of Ca2+ not only induces sustained impairment on contractile function, 

but also mediates the damage on cell membrane, which leads to the progression of the 

injury to an advanced stage (Buja, 1991).  

The increase in cytosolic Ca2+ activates Ca2+–dependent protease and phospholipase 

which degrades phospholipid and releases lysophospholipids and free fatty acids. 

Peroxidative stress continuously mounts with accumulation of toxic oxygen species and 
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free radicals generated from myocytes, endothelial cells, and activated leukocytes, 

inducing further damage to the membrane phospholipid. Activated proteases cleave 

cytoskeletal filaments, which disrupts the cellular scaffolds. These changes collectively 

lead to a loss of membrane integrity and terminally demolish the cell structure.  

1.2.6.2 Necrosis and apoptosis of cardiac cells 

Necrosis and apoptosis represents the two fundamental forms of cell death:  cell injury 

with swelling, known as necrosis, and cell injury with shrinkage, known as apoptosis 

(Majno and Joris, 1995). Necrosis occurs when cells are exposed to extreme stumili like 

ischemia and ends with total cell lysis. Due to the plasma membrane breakdown, 

cytoplasmic contents including lysosomal enzymes are released into the extracellular 

environment. Therefore, necrotic cell death is often associated with massive tissue 

damage and an intense inflammatory response. Apoptosis, in contrast, can occur under 

physiological or pathological conditions. Cells undergoing apoptosis feature partition of 

cytoplasm and nucleus into membrane bound-vesicles (apoptotic bodies) which contain 

ribosomes, morphologically intact mitochondria and nuclear material. Thus, no 

inflammatory response is elicited in vivo due to efficient removal of apoptotic bodies by 

macrophages or adjacent epithelial cells.  

Extensive investigation has pointed to necrosis as the chief form of cardiomyocyte 

death during ischemic injury. However, more recently, a role of apoptosis has been 

identified in many forms of cardiac pathology, including myocardial ischemia (Buja and 

Entman, 1998). The rate and magnitude of ATP depletion are determinants of whether 

cell injury progresses by apoptosis or necrosis because apoptosis is an ATP-dependent 

process (Buja, 2005). Generally, in the central region of the infarct, necrosis 
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predominates, while in the peripheral areas there is a mix of necrosis and apoptosis. 

Despite little acute cell death in the remote myocardium, increasing levels of both forms 

of cell death are noted during the late phases (Mani K, 2008). As the severity of ischemia 

declines and reperfusion supervenes, the quantum of necrosis decreases, while that of 

apoptosis increases (Anversa et al., 1998). 

1.2.6.3 Reperfusion injury 

Reintroduction of coronary flow to the infracted area is necessary to resuscitate the 

ischemic myocardium and limit the extent of myocardial necrosis. However, the effects 

of reperfusion are complex and may include some deleterious consequences collectively 

referred to as reperfusion injury (Yellon and Baxter, 2000). This reperfusion injury is 

manifested by myocardial stunning, microvascular dysfunction and expedition of cell 

death in certain critically injured myocytes. The major mediators of reperfusion injury are 

free oxygen radicals, overloaded calcium, and neutrophils (Carden and Granger, 2000; 

Granger, 1999; Park and Lucchesi, 1999). The oxygen radicals are generated by injured 

myocytes and endothelial cells, as well as neutrophils activated on reperfusion. Free 

radicals exacerbate membrane damage and stimulate vasoconstriction, which, when 

severe enough, cause a “no-flow” phenomenon. Impaired intracellular calcium 

homeostasis also plays an important role in the reperfusion injury. The overloaded 

calcium induces maximum contraction of the myofibrils upon reperfusion, resulting in a 

disruptive type of necrosis, termed contraction band necrosis (Verma et al., 2002). An 

increase in mitochondrial [Ca2+] triggers the opening of mitochondrial permeability 

transition pore (mPTP) and leads to the release of cytochrome C and other proapoptotic 

factors that initiates the apoptotic cascade (Halestrap et al., 2004). Reperfusion is also a 
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potent stimulus for neutrophil activation and accumulation, which in turn serve as potent 

stimuli for reactive oxygen species production. The neutrophils accumulate in the 

microcirculation, release inflammatory mediators, and contribute to microvascular 

obstruction and the no-reflow phenomenon.  

1.3 Interventions for cardiac ischemia 

The search for approaches to protect the heart against ischemia during coronary occlusion 

has been going on for half a century in both clinical settings and basic research. In the 

current session, we will describe these approaches from the earliest efforts to limit 

myocardial infarct size to the cutting edge of stem cell therapy.  

1.3.1 Clinical Treatment 

1.3.1.1 First line 

Myocardial infarction is a medical emergency which demands immediate attention and 

activation of the emergency medical services. Oxygen, aspirin (antiplatelet drug), 

glyceryl trinitrate (prodrug of NO) and morphine (analgesia), hence the popular MONA 

(morphine, oxygen, nitro, aspirin), are the first line drugs recommended to be 

administered as soon as the symptoms occur (Antman et al., 2004). Once diagnosed as 

myocardial infarction, the patient is often given other pharmacologic agents, including 

beta blockers, anticoagulation (typically with heparin), and possibly additional 

antiplatelet agents such as clopidogrel (Antman et al., 2004). These agents are typically 

not started until the patient is evaluated by an emergency room physician or under the 

direction of a cardiologist.  

1.3.1.2 Reperfusion therapy 
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The ultimate goal of the management in the acute phase of myocardial infarction is to 

salvage as much myocardium as possible and prevent further infarction. Timely 

reperfusion of coronary flow facilitates cardiomyocyte salvage and decreases cardiac cell 

death. Modalities for reperfusion include thrombolysis, percutaneous coronary 

intervention (PCI) and coronary artery bypass grafting (CABG). 

Thrombolytic therapy achieves reperfusion by lysing the thrombi in the infarct artery. 

The effectiveness of thrombolytic therapy is determined by the timing of administration 

of thrombolytic agents. The best results are always observed when the thrombolytic agent 

is used within two hours of the onset of symptoms (Boersma et al., 1996). After 12 hours, 

associated risks like intracranial or systemic bleeding outweigh any benefit (Late, 1993). 

An ideal thrombolytic drug would lead to rapid reperfusion, have a high sustained 

patency rate, be specific for recent thrombi, be easily and rapidly administered, and create 

a low risk for intra-cerebral and systemic bleeding (White and Van de Werf, 1993). 

Currently available thrombolytic agents are streptokinase, urokinase, and alteplase 

(recombinant tissue plasminogen activator).  

Percutaneous coronary intervention (PCI), commonly known as coronary angioplasty 

or simply angioplasty, is a surgical procedure to treat the blocked coronary arteries by 

inflating a balloon within the artery to crush the thrombus. The procedure involves 

performing a coronary angiogram to determine the location of the blocked vessel, 

followed by balloon angioplasty to compress the plaque, and implantation of stents to 

prop the vessel open. The benefit of a prompt expertly-performed PCI over thrombolytic 

therapy has been well established (Keeley et al., 2003; Grines et al., 1993). However, 
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logistic and economic obstacles seem to hinder a more widespread application of PCI 

(Boersma et al., 2006).  

Coronary artery bypass graft surgery is another important approach to improve the 

blood supply to the blocked myocardium. During the surgery, an artery or vein from 

elsewhere in the patient’s body is grafted to the coronary artery to bypass narrowings or 

occlusions. Several arteries and veins can be used; however the left internal thoracic 

artery, usually grafted to the left anterior descending coronary artery (LAD), have been 

demonstrated to last longer than great saphenous vein grafts (Raja et al., 2004).  

Emergency CABG is less common than PCI for the treatment of an acute myocardial 

infarction. However, in patients with two or more coronary arteries affected, bypass 

surgery is superior to PCI in terms of long-term survival rates (Hannan et al., 2005).  

Because irreversible injury occurs within 2–4 hours of the infarction, there is a 

limited time window for reperfusion to produce beneficial results. If attempts to restore 

the blood flow are initiated after a critical period of only a few hours, the result is 

reperfusion injury instead of amelioration (Faxon, 2005). Moreover, reperfusion is unable 

to reverse the developed tissue damage. The lost cardiomyocytes will be replaced by a 

collagen scar that is not contractible and permanently impairs the pump function. 

Accordingly, intense interest has been directed to investigate the application of stem cell 

on the repair of heart damage. The present course of this pioneering work will be briefly 

reviewed in the following session.  

1.3.1.3 Stem cell therapy under investigation 

It is traditionally hold that the heart muscle itself has no housekeeping mechanism to 

repair any minor damage, given that the number of myocytes undergoing proliferation is 
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too low if myocytes proliferation were to act as an effective repair mechanism. Stem cell, 

with its ability to self-renew and to form any fully-differentiated cell of the body, 

provides the possibility of repairing end organ damage, particularly the heart that has 

undergone myocardial infarction.  

Several studies have suggested that bone marrow derived progenitor cells were able 

to repair the hearts of animals after myocardial injury (Tomita et al., 1999; Toma et al., 

2002; Orlic et al., 2001). In one report, bone-marrow-derived cells were injected directly 

into the heart of the mouse after myocardial infarction was induced (Orlic et al., 2001). 

Newly formed myocardium composed of proliferating myocytes and vascular structures 

was found to occupy 68% of the infarcted portion of the ventricle 9 days after 

transplanting the bone marrow cells. Using immunofluorescence techniques the 

investigators showed that these primitive bone-marrow-derived cells had undergone a 

process of differentiation that led them to express various markers specific to 

cardiomyocytes. This is supported by several other works suggesting that adult stem cells, 

in particular those derived from bone marrow, were capable of targeting the site of 

myocardial injury as well as undergoing differentiation into cardiomyocytes (Jackson et 

al., 2001; Beltrami et al., 2003).  

These initial findings in animal models have prompted a series of clinical studies in 

human beings. Several groups have independently reported improvement in cardiac 

function in patients treated with stem cells derived from their own bone marrow after a 

myocardial infarction (Assmus et at., 2002; Strauer et al., 2002; Wollert et al., 2004). The 

delivery route of progenitor cells included intracoronary, percutaneous intramyocardial 

and direct intramyocardial at the time of coronary artery bypass graft. Importantly, most 
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of these studies reported few side-effects. However, a failure to explain the action 

mechanism underlying the improvement in cardiac function has provoked concerns. 

Moreover, these trials so far have not been double-blind randomized. Further definitive 

clinical studies are essentially necessary, especially randomized controlled trials (Mathur 

and Martin, 2004). The benefit of this novel approach still needs to be confirmed and 

optimized before it can be applied to treating patients with ischemic heart disease. 

1.3.2 Ischemic Preconditioning (IP) 

With exception of reperfusion therapy, most early attempts to salvage the myocardium 

during acute myocardial infarction have failed to directly reduce infarct size (Przyklenk 

and Kloner, 1998). The first indication that the heart can adapt itself after repeated 

ischemic stress was demonstrated in porcine myocardium, where lactate release in a 

subsequent ischemia/reperfusion (I/R) episode was significantly lower compared with 

lactate release in the first episode of I/R (Verdouw et al., 1979). In 1986 Murry and his 

colleagues published a landmark article in which they documented that four repetitive 5-

min of regional ischemia induced an extremely powerful protection against a subsequent 

lethal ischemia in anesthetized dogs. Infarct size was limited to 25% of that seen in the 

control group after 40 min of sustained ischemia (Murry et al., 1986). The investigators 

named this cardiac warm-up phenomenon as "ischemic preconditioning" (IP). 

Subsequently, numerous studies using various models (e.g., liver, kidney, brain, and 

endothelial cells) showed that short period(s) of ischemia or anoxia could allow tissues to 

survive subsequent ischemia that would have otherwise been lethal (Sanada and kitakaze, 

2004). Understanding this natural protection has since become one of the major targets in 

search for preventions against ischemic damages. 
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While initial studies demonstrated that ischemic preconditioning could protect the 

heart against sustained ischemia that occurred soon after preconditioning, Kuzuya et al. 

(Kuzuya et al., 1993) and Marber et al. (Marber et al., 1993) independently reported in 

1993 that the cardioprotective effect of ischemic preconditioning was still detectable 24 

hours after preconditioning. Kuzuya’s group (Kuzuya et al., 1993) also found that the 

infarct-limiting effect of preconditioning was lost between 3 and 12 hours after a brief 

period of ischemia, which suggested that there were two separate periods of 

cardioprotection afforded by ischemic preconditioning. They named them the ‘‘first 

window’’ and ‘‘second window’’ respectively. The first window of the protection, often 

referred to as classical or early phase, develops as early as few minutes after the 

preconditioning stimulus and lasts only 1–2 hours (Murry et al., 1986). The second 

window, also known as the late or delayed phase, develops more slowly, 12–24 hours 

after the preconditioning stimulus, but lasts for 3–4 days (Kuzuya et al., 1993) (Marber et 

al., 1993). The mechanisms of these two phases are different. The first phase of 

protection is initiated by posttranslational modifications of proteins that are already 

present, whereas the second phase is mediated by synthesis of de novo proteins (Bolli, 

2000);  The early phase depends on reactions that occur very rapidly, such as activation 

of ion channels or phosphorylation of enzymes, whereas the late phase involves processes 

that take far longer to occur such as modulation of the genes regulating channel proteins, 

receptor, enzymes, molecular chaperon proteins, or immune factors (Sanada and kitakaze, 

2004). However, these two types of cardioprotection seem to share certain triggers, 

mediators, and effectors despite differences in the timing of participation in each cascade. 
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1.3.2.1 Cellular mechanisms of the early phase of IP 

1.3.2.1.1 Adenosine, bradykinin and opioids  

In 1991, Liu et al. (Liu et al., 1991) first discovered that stimulation of the Gi-coupled 

adenosine A1 receptor was necessary to trigger IP’s protection. They used a rabbit model 

to show that administration of adenosine receptor antagonist, 8-psulfophenyl theophylline 

(8-SPT), prior to sustained ischemia was able to abolish the protective effect of IP. 

Infusion of adenosine or A1-specific agonist reproduced the protection afforded by IP. 

Liu proposed that endogenous adenosine released during IP results in the preconditioned 

phenotype. Two other endogenously released trigger substances, bradykinin (Wall et al., 

1994) and opioids (Schultz et al., 1995), were subsequently found to be involved in IP 

and appeared to work in parallel. Inhibition of any one of these three receptors blocked 

IP’s protection from a single preconditioning cycle. However, the protection could again 

be realized if the number of preconditioning cycles was increased. This led Goto et al. 

(Goto et al., 1995) to suggest that the three receptors had an additive effect required to 

reach a hypothetical protective threshold. Increase in brief ischemia/reperfusion cycles 

released more trigger substances so that two receptors could eventually reach the 

protective threshold even when the third one was inhibited.  

1.3.2.1.2 Protein Kinase C (PKC) 

The multiple trigger theory mentioned above requires that all triggers converge on a 

common target. In 1994, Ytrehus et al. (Ytrehus et al., 1994) found that inhibition of PKC 

abolishes the protection induced by ischemic preconditioning or by pretreatment with 

adenosine. It was later discovered that the cardioprotection afforded by two other trigger 

substances, bradykinin (Goto et al., 1995) and opioids (Miki et al., 1998), could also be 
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blocked by PKC inhibitors. These results suggest that PKC is a strong candidate for the 

common target and plays a pivotal role in the IP’s cardioprotection.  

The PKC family consists of 12 closely related Ser/Tre kinases, classified into three 

distinctive subfamilies. Classical PKCs (cPKC) include PKC α, β1, β2 and γ isoforms, and 

require both Ca2+ and lipids (i.e. phosphatidylserine, PMA and/or diacylglycerol) for their 

activation. Novel PKC isoforms (nPKC), which include PKC δ, ε, η, θ and µ, are not 

sensitive to calcium, but still require lipids for their activation. The subfamily of atypical 

PKC isoforms, PKC ζ and λ, are not activated by Ca2+, diacylglycerol or PMA and their 

regulation is more complicated. The number and levels of PKC isozyme expression 

varies in different tissues and species and changes with developmental stage of the 

animal. 

Early studies on the role of PKC in ischemic preconditioning mainly relied on the 

pharmacological manipulation with PKC inhibitors and stimulators. In an in vivo study 

performed by Speechly-Dick and colleagues (Speechly-Dick et al., 1994), the PKC 

inhibitor chelerythrine, administered after a preconditioning stimulus, abolished 

protection conferred by IP, and caused an increase in infarct size. In the same study, PKC 

stimulator 1,2-dioctanoyl-sn-glycerol, administered prior to sustained ischemia, 

significantly reduced infarct size. 

A large body of data supporting the PKC hypothesis has been obtained in the isolated 

rat heart subjected to sustained global ischemia (Mitchell et al., 1995; Hu and Nattel, 

1995). In this model, functional recovery during reperfusion is typically chosen as the 

index of damage caused by sustained ischemia, and to evaluate the protective effect of IP. 

For example, Mitchell et al. showed that preconditioning with brief episode of I/R 
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significantly increased functional recovery at 40 min after relief of a 20 min period of 

global ischemia (Mitchell et al., 1995). The PKC inhibitors chelerythrine and 

staurosporine abolished this protective effect, while the diacylglycerol analogue 1-

stearoyl-2-arachidonoyl glycerol mimicked the benefits of ischemic preconditioning. 

Moreover, immunoblotting for PKC isoforms showed that two major isoforms in rat heart, 

PKCδ and PKCε, both translocated during brief episodes of transient ischemia from 

cytosol into membrane and nuclear compartments. 

The role of PKC in ischemic preconditioning has been evaluated in a diverse array of 

models, species and protocols. Most of the results were obtained using pharmacological 

approach, i.e. by administering PKC inhibitors and/or activators. Unfortunately, these 

inhibitors or activators are isoform-nonspecific, which makes it difficult to single out the 

isoforms that are responsible for the IP cardioprotection. Immunoblotting represents an 

alternative to pharmacological and biochemical methods. By assessing subcellular 

distribution of PKC isoforms, the involvement of a given isoform can be determined. A 

better solution is to develop isoform-specific inhibitors and activators. In a study 

conducted by Gray et al., isoform-specific inhibition of PKCε has been successfully 

employed. In a cell culture model of hypoxic preconditioning, they found that specific 

inhibitor of PKCε (i.e. ε-VI-2 peptide) abolished the protection induced by hypoxic 

preconditioning and phorbol ester (Gray et al., 1997). This isoform specific modification 

allows researchers to identify the particular isoforms that are necessary for the 

cardioprotection to occur. 

1.3.2.1.3 ATP-sensitive-potassium channel (KATP) 



18 

 

Investigation of KATP channels has a longer history than studies on ischemic 

preconditioning. In 1983, Noma (Noma, 1983) first reported the existence of these 

channels in the myocardium. The cardiac KATP channel is composed of four Kir6.2 

subunits (inwardly rectifying potassium channel) and four SUR2A subunits (sulfonylurea 

receptor) and is modulated by Mg2+ and ATP (Snyders, 1999). Opening of the surface or 

sarcolemmal KATP channel (sarcoKATP) was proposed to produce cardioprotection via 

shortening of phase 3 repolarization of the cardiac action potential and membrane 

hyperpolarization, both of which would lead to reduced calcium overload during 

ischemia/reperfusion and a preservation of ATP (Noma, 1983). These phenomena 

resemble the acute cardiac responses and cardioprotection afforded by ischemic 

preconditioning. Indeed, a number of early studies have presented strong evidence for a 

role for sarcoKATP in mediating IP, with infarct size reduction as the end point to describe 

the cardioprotective effect. These include those reported by Yao and Gross (Yao and 

Gross, 1994) and Schulz et al. (Schulz et al., 1994), who showed an association between 

action potential shortening and IP, and the study of Haruna et al. (Haruna et al., 1998), 

who showed digoxin, an inhibitor of Na+-K+ ATPase, blocked the cardioprotective effect 

of IP by indirectly desensitizing KATP channels. Another study using molecular 

techniques shed some light on the role of KATP in alleviating calcium overload during 

ischemia. Jovanovic et al. (Jovanovic et al., 1986) found that in KATP-deficient COS-7 

cells, marked calcium loading occurred when these cells were exposed to 3 minutes of 

chemically-induced hypoxia. However, when they cotransfected the cells with both 

subunits of the sarcoKATP channel, SUR2A and Kir6.2, the addition of the KATP opener 
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pinacidil attenuated the calcium loading. Similar results were obtained with pinacidil in 

cardiac myocytes expressing the native sarcoKATP channel.  

In 1991, Inoue et al. (Inoue e tal., 1991) found that not only the cell membrane but 

also the inner mitochondrial membrane possessed ATP-sensitive inward rectifier activity, 

and they suggested the existence of “mitochondrial KATP channels” (mitoKATP). It is 

thought that a beneficial effect may result from K+ entry through mitoKATP and 

intramitochondrial depolarization. This effect would reduce mitochondrial calcium 

overload and cause moderate matrix swelling, which leads to slowing of ATP synthesis 

and accelerated mitochondrial respiration (Holmuhamedov et al., 1998). Moreover, the 

reactive oxygen species (ROS), which are transiently generated by opening of the 

mitoKATP channels, is able to activate downstream cascades and confer the 

preconditioning effect (Pain et al., 2000). The mitoKATP could thus be involved in acute 

IP as either a trigger or an end effector, or both.  

Thereafter, the contribution of mitochondrial and sarcolemmal KATP channels to IP-

induced cardioprotection has been studied extensively. The effect that had been 

considered to be related to sarcolemmal KATP channels, were found to be actually 

mediated by mitochondrial KATP channels (Liu et al., 1999). However, some concerns 

have been raised over those studies on the role of mitoKATP channels in IP. Firstly, the 

structure of mitoKATP is still largely unknown. It is now thought that mitoKATP might not 

include the Kir 6.1 or Kir 6.2 subunits, which are common to sarcolemmal and other 

KATP channels (Suzuki et al., 2002). Secondly, the only tool drugs available to 

pharmacologically modulate mitoKATP channels (diazoxide as an opener and 5-

hydroxydecanoate [5-HD] as an inhibitor) also have direct effects on cellular respiratory 
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metabolism (Dzeja et al., 2003; Hanley et al., 2003). Thirdly, some recent studies using 

big animal models have failed to show complete modulation of the cardioprotective effect 

of ischemic preconditioning by these two drugs (Sanada et al., 2001a; Schwartz et al., 

2002).  

It is not clear why these discrepancies exist, but some investigators have suggested 

that opening of sarcolemmal KATP channels may be more important in the beating hearts 

to limit stunning, while in in vitro experimental conditions opening of mitoKATP appears 

to limit cell death (Gross and Peart, 2003). The actual cardioprotective role of these 

channels still needs to be investigated further.  

1.3.2.1.4 The mitogen-activated protein kinase (MAPK) 

Mitogen-activated protein kinase (MAPK) are serine-threonine protein kinases that are 

activated by diverse stimuli ranging from cytokines, growth factors, neurotransmitters, 

hormones, cellular stress, and cell adherence. They function in a three-tier module 

comprising of a MAPK kinase kinase, a MAPK kinase and a MAPK. The mammalian 

MAPK can be subdivided into five families: 42 and 44-kDa extracellular signal-regulated 

kinase (Erk1/2), p38, the c-Jun NHP2 terminal kinase (JNK), Erk 3/4 and Erk 5 

(Widmann et al., 1999). 

The role of Erk1/2 as a potential mediator of IP has been controversial, with the 

majority of studies supporting its role in the IP’s cardioprotection (Hausenloy and Yellon, 

2006). In response to preconditioning stimulus, Erk1/2 was found to redistributes to the 

nucleus, intercalated discs, cytosol and mitochondria. Erk1/2 can phosphorylate and 

inhibit GSK-3β (Eldar-Finkelman et al., 1995), the consequence of which is inhibition of 



21 

 

mPTP in different settings of cardioprotection (Juhaszova et al., 2004). Thus it is worthy 

to investigate whether Erk1/2 mediates IP’s cardioprotection by inhibiting mPTP opening.  

Weinbrenner et al. (Weinbrenner et al., 1997) were the first to report that IP caused 

p38MAPK activation during ischemia in preconditioned rabbit heart. However, 

p38MAPK was not activated during ischemia in the control group. Contradictory results 

were obtained in 1999 by in vivo (Ma et al., 1999) and in vitro (Mackay and Mochly-

Rosen, 1999) studies suggesting that p38MAPK activation could promote ischemic 

damage. Interestingly, in the latter study, prolonged ischemia was found to induce 

biphasic activation of p38MAPK in rat cardiomyocytes, with a transient peak occurring 

within minutes and followed by a sustained activation after 2h (Mackay and Mochly-

Rosen, 1999). Another study performed by Sanada revealed that IP caused a transient but 

strong activation of p38MAPK. Treatment with SB 203580, a selective p38MAPK 

inhibitor, during IP blunted the infarct size-limiting effect of IP, while, conversely, the 

presence of the inhibitor during sustained ischemia partially mimicked the protection of 

IP (Sanada et al., 2001b). This observation led to the hypothesis that p38MAPK 

activation has opposing effects; that is, transient activation during IP prevents ischemic 

injury, while continuous activation during sustained ischemia exacerbates it.  

1.3.2.1.5 Phosphoinositide 3 kinase (PI3-K) and Akt 

PI3-K, the kinase phosphorylating the plasma membrane lipid phosphatidyl-inositol-4,5-

bisphosphate to phosphatidyl-inositol-3,4,5-triphosphate, is implicated in a diverse group 

of cell functions, including cell growth, cell differentiation, cell survival and intracellular 

trafficking. Many of these functions are related to its ability to activate Protein Kinase B 

(PKB, also called Akt) (Cantley, 2002). 
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In 2000, Tong et al. (Tong et al., 2000) first demonstrated that IP protects the heart by 

activating the PI3K–Akt pathway and were later supported by several other studies 

(Mocanu et al., 2002; Yamaura et al., 2003). Inhibition of PI3-K was shown to attenuate 

IP’s cardioprotective effect and also block the phosphorylation of Akt following IP. Akt 

is known to be able to activate anti-apoptotic pathways (Hausenloy and Yellon, 2004). A 

recent study by Davidson et al. demonstrated that over-expressing Akt protected cells 

against oxidative stress by inhibiting mPTP opening (Davidson et al., 2006). 

1.3.2.2 Cellular mechanisms of the late phase of IP 

The late phase of ischemic preconditioning provides far more prolonged cardioprotection 

than the early phase (48-72 hours versus 2 to 3 hours), which gives rise to the notion that 

the late phase may ultimately have greater clinical usefulness.  

1.3.2.2.1 Adenosine 

The concept that adenosine released during the brief ischemia stimulus triggers the 

development of delayed protection was first proposed by Baxter et al. (Baxter et al., 1994) 

and subsequently expanded by the same group (Baxter and Yellon, 1997a; Dana et al., 

1998) and others (Auchampach et al., 1999; Takano et al., 1999). Activation of adenosine 

receptors has been reported to provide delayed protection only against myocardial 

infarction but not against myocardial stunning or arrhythmias (Maldonado et al., 1997; 

Auchampach et al., 1999). And such delayed protection can be triggered by activation of 

either adenosine A1 or A3 receptors (Auchampach et al., 1999; Takano et al., 1999). 

However, it is not clear whether only one or both of these adenosine receptor subtypes 

contributes to triggering delayed IP, because 8-psulfophenyl theophylline, the only 
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adenosine receptor antagonist shown to block the development of late IP (Baxter et al., 

1994), is not selective between A1 and A3 receptors. Studies have shown that selective 

stimulation of adenosine A1 receptors activates p38MAPK-HSP27 pathway via a PKC-

dependent mechanism (Dana et al., 2000b) and increases the synthesis of manganese 

superoxide dismutase (Mn–SOD) (Dana et al., 2000a), while the role of A3 receptors is 

yet to be established. 

1.3.2.2.2 Reactive Oxygen Species (ROS) 

ROS includes oxygen ions, free radicals, and peroxides. They are highly reactive due to 

the presence of unpaired valence shell electrons. While a large burst of ROS results in 

cell damage, moderate release of ROS can act as an alarm to warn the myocardium to 

switch to a defensive phenotype.  An obligatory role of ROS in the delayed protection 

induced by IP was first discovered by Sun et al. (Sun et al., 1996). These investigators 

demonstrated in conscious pigs that the administration of a combination of antioxidants 

(superoxide dismutase [SOD] plus catalase plus mercaptopropionyl glycine [MPG]) 

during the initial ischemic challenge prevented the development of late protection against 

stunning. MPG has also been found to prevent the late protection against infarction, 

arrhythmias (Yamashita et al., 1998), and coronary endothelial injury (Kaeffer et al., 

1997). In contrast, intracoronary infusion of an ROS-generating solution in rabbits elicits 

a late IP-like response (Takano et al., 1997). These findings provided strong evidence that 

sublethal oxidative stress is essential to initiate the protection observed in the late phase 

of IP.  

1.3.2.2.3 Nitric Oxide (NO) 
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Nitric oxide (NO) is an endogenous vessel relaxant that was initially identified as 

endothelium-derived relaxation factor (EDRF). It is generated from the amino acid L-

arginine by various nitric oxide synthase (NOS). There are 3 forms of NOS: endothelial 

(eNOS), neuronal (nNOS), and inducible (iNOS), each with separate functions. The two 

isotypes present in the cardiovascular system are eNOS and iNOS.  

The first indication that NO triggers late IP was provided by a study in which 

administration of Nw-nitro-L-arginine (L-NA), a nonselective inhibitor of all NOS 

isoforms, before preconditioning stimulus blocked the development of delayed protection 

against myocardial stunning (Bolli et al., 1997a). A subsequent study demonstrated that 

NO is also necessary to trigger delayed protection against myocardial infarction (Qiu et 

al., 1997). Importantly, exposure to exogenous NO is sufficient to reproduce late 

protection against both myocardial stunning and infarction that is observed during the late 

phase of IP (Takano et al., 1998b). 

NO plays a dual role in the genesis of late cardioprotection of IP, acting initially as a 

trigger and subsequently as a mediator. Immediately after preconditioning stimulus, there 

is an increase in eNOS activity in the myocardium (Xuan et al., 2000). The enhanced 

biosynthesis of NO by eNOS is important to trigger the development of the delayed 

cardioprotection, which can be abrogated by non-selective NOS inhibitor but not by 

relatively selective inhibitors of iNOS applied before the preconditioning stimulus (Bolli 

et al., 1997b).  However, 24 hours after the brief I/R stimulus, iNOS seems to take over 

and mediate the late protection. Evidence was first provided by two studies in conscious 

rabbits, in which the delayed protection against both myocardial stunning (Bolli et al., 

1997b) and infarction (Takano et al., 1998a) was abrogated by administration of 
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relatively selective iNOS inhibitors 24h after preconditioning, just before the lethal 

ischemia. Guo et al. (Guo et al., 1999) later demonstrated that the late phase of IP is 

associated with upregulation of myocardial iNOS (whereas eNOS remains unchanged) 

and that targeted disruption of the iNOS gene eliminated the delayed infarct-sparing 

effect. Taken together, the two isoforms of NOS are sequentially involved the late phase 

of IP, with eNOS generating the NO that initiating the development of IP response on day 

1 and iNOS generating the NO that protects against recurrent ischemia on day 2 (Bolli, 

2000).  

1.3.2.2.4 PKC 

In 1995, Baxter first demonstrated the essential role of PKC in the late phase of IP with a 

study in which the delayed infarct-sparing effects of IP in rabbits were abrogated by 

pretreatment with the PKC inhibitor chelerythrine (Baxter et al., 1995). Conversely, 

administration of the PKC activator dioctanoyl-sn-glycerol induced cardioprotection 24 

hours later (Baxter et al., 1997b). Subsequent studies revealed that IP caused selective 

translocation of PKCε and PKCη but did not affect the other 8 isoforms expressed in the 

rabbit heart and did not significantly change total PKC activity (Ping et al., 1999b). In the 

same model, pretreatment with the PKC inhibitor chelerythrine at doses that have 

previously been shown to block IP’s protection blocked the translocaiton of PKCε (Ping 

et al., 1999b), whereas the same inhibitor at a 10-fold lower dose shown to only block the 

translocation of PKCη failed to abrogate the late protection of IP (Qiu et al., 1998). These 

findings suggest that activation of PKC after ischemic preconditioning is isoform 

selective and ε seems to be the specific PKC isozyme responsible for the development of 

delayed protection in this setting. The IP-induced activation of PKCε is likely to be 
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caused by the generation of NO during the initial ischemic stress according to Ping’s 

study, where they found that such activation was blocked by pretreatment with L-NA 

(Ping et al., 1999a). In the same study, they also observed that administration of NO 

donors in the absence of ischemia induced a selective activation of PKCε to an extent 

comparable to that induced by IP, while coadministration of chelerythrine blocks both the 

activation of PKCε and the delayed protection elicited by the NO donors (Ping et al., 

1999a).  

Other Preconditioning studies have implicated PKC-α, PKC-δ, and PKC-ε in the rat 

heart (Yoshida et al., 1997), and PKC- α in the dog heart (Kitakaze et al., 1997). 

Interestingly, in an isolated rat heart model, PKC-δ and PKC-ε are demonstrated to play 

opposing roles in cardioprotection, with activation of the former being detrimental and 

activation of the latter being protective (Inagaki et al., 2003). In another study using a 

mouse model, transgenic expression of constitutively-activated PKCε in the heart was 

shown to be able to recapitulate both the signaling events and the late protection of IP 

(Ping et al., 2000).  

1.3.2.2.5 KATP channel 

Pharmacological studies have provided evidence that opening of KATP channels is 

necessary for the delayed infarct-sparing effects induced by ischemic preconditioning 

(Bernardo et al., 1999; Takano et al., 2000), adenosine A1 and A3 receptor agonists 

(Takano et al., 1999), and opioid receptor agonists (Fryer et al., 1999). These diverse 

preconditioning stimuli converge on KATP channels, suggesting that the activity of these 

channels may be a common distal effector of delayed protection against cell death. 

However, the IP-induced late protection against stunning does not appear to require KATP 
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channel activity (Takano et al., 1999). The different role of KATP channels in late IP 

against stunning versus against infarction provides evidence that different mechanisms 

underlie these two forms of cardioprotection.  

Major issues that remain to be elucidated are the identity of the KATP channels 

involved in the late phase of IP (i.e., sarcolemmal versus mitochondrial) and the 

mechanism whereby their opening confers protection. Given the limitations of the 

available pharmacological tools, it has been suggested that molecular approaches such as 

gene targeting and transgenesis will be required to definitively assess the role of 

mitochondrial versus sarcolemmal KATP channels (Bolli, 2000).  

1.3.2.2.6 Transcription factors 

Transcription factors govern the expression of the cardioprotective genes responsible for 

late IP. The first transcription-regulatory element identified in the late IP signaling 

mechanisms was nuclear factor-kB (NF-kB) (Xuan et al., 1999), which is known to be a 

major modulator of iNOS, COX-2, and aldose reductase gene expression. Using 

conscious rabbits, Xuan and colleagues found that IP induced rapid activation of NF-kB. 

Inhibition of NF-kB with diethyldithiocarbamate completely abrogated the 

cardioprotective effects observed 24 hours later. They further demonstrated that the IP-

induced activation of NF-kB was blocked by pretreatment with L-NA (NOS inhibitor), 

MPG (antioxidant), chelerythrine, and LD-A (protein tyrosine kinase [PTK] inhibitor), all 

given at doses previously shown to block late IP.  This finding indicates that the cellular 

mechanism whereby IP activates NF-kB involves the formation of NO and ROS and the 

subsequent activation of PKC and PTK-dependent signaling events. Thus, NF-kB appears 
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to be a common downstream pathway though which multiple signals elicited by ischemic 

stress (NO, ROS, PKC, and PTKs) act to induce gene expression in the heart.  

1.3.2.2.7 Cyclooxygenase-2 (COX-2) 

Cyclooxygenase (COX) is the rate-limiting enzyme in prostaglandin (PG) synthesis, 

catalyzing the conversion of arachidonic acid to PGH2 (Smith et al., 1996). Two distinct 

COX isoforms have been characterized so far: COX-1, which is present in most cells and 

is responsible for constitutive prostanoid formation, and COX-2, which is inducible and 

becomes abundant in activated macrophages and other cells at sites of inflammation.  

Induction of COX-2 was generally thought detrimental. However, the role of COX-2 

in cardiovascular system has been found to be beneficial. Recent studies have 

demonstrated that ischemic preconditioning upregulates the expression and activity of 

COX-2 in the heart 24h after preconditioning, concomitant with an increase in the 

myocardial levels of PGE2, 6-keto-PGF1α (the stable metabolite of PGI2), and (to a lesser 

extent) PGF2α (Shinmura et al., 2000). Administration of 2 unrelated COX-2-selective 

inhibitors (NS-398 and celecoxib) 24 hours after IP abolishes the increase in prostanoids 

and, at the same time, completely blocks the cardioprotective effects of late IP against 

both myocardial stunning and infarction. These observations identify COX-2 as a 

cardioprotective protein and strongly point to PGE2 and/or PGI2 as the likely effectors of 

COX-2–dependent protection. Subsequent studies by the same group further addressed 

the mechanism underlying the regulation of COX-2 by IP (Shinmura et al., 2002). Using 

conscious rabbit model, they found that induction of COX-2 protein expression in 

preconditioned myocardium requires PKC-, Src/Lck PTK-, and NF-κB-dependent 



29 

 

signaling. On the other hand, iNOS-derived NO was required for the activity of newly 

synthesized COX-2 following IP. 

1.3.2.2.8 Heat shock protein (HSP) 

Heat shock proteins (HSP) are a group of highly conserved proteins whose expression is 

increased when the cells are exposed to elevated temperatures or other stress. Each HSP 

is named according to its molecular weights. The best characterized HSPs, hsp90, hsp70 

and hsp65, are induced in response to heat in all organisms studied from bacteria to 

human. 

In 1991, Knowlton et al. first reported the expression of HSP in rabbit after brief 

ischemia challenge (Knowlton et al., 1991). Marber et al. confirmed this finding (Marber 

et al., 1993) and further demonstrated in a later study that there is a correlation between 

the amount of hsp70 induced and the ability to limit infarct size (Marber et al., 1994). 

This led to the hypothesis that the protection of late IP is mediated by these chaperon 

proteins. In 1995–1996, several groups successfully generated transgenic mice that over-

expressed hsp70 in the heart and other organs (Marber et al., 1995; Plumier et al., 1995; 

Radford et al., 1996). In all cases, these groups were able to demonstrate that such over-

expression of hsp70 protected the heart against ischemia damage using a variety of 

endpoints such as infarct size, creatine kinase release, recovery of high energy phosphate 

stores, and correction of metabolic acidosis. 

Recently, another member of HSP, hsp27 has been suggested to participate in the late 

protection of IP as a downstream target of p38MAPK (Nakano et al., 2000; Huot et al., 

1997; Hedges et al., 1999). The translocation of hsp27 from cytosol to myofibril or 

nucleus may prevent actin fragmentation (Huot et al., 1996) or microtubule degradation 
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(Bluhm et al., 1998). On the other hand, hsp27 prevents the interaction of Apaf-1 with 

procaspase-9 through binding to cytochrome c (Garrido et al., 1999). Both of these 

actions can ameliorate or delay ischemic cell death. 

1.3.3 Pharmacological preconditioning 

Despite the powerful protection provided by ischemic preconditioning, the clinical 

implement of this approach faces practical problems. Because brief ischemia challenge 

must precede lethal ischemia to achieve cardioprotection, induction of preconditioning 

ischemia doesn’t serve as a realistic therapeutic strategy for patients with ischemic heart 

disease. However, if the signaling mechanisms underlying IP can be determined, more 

simple and effective therapeutic intervention can be developed accordingly. Considerable 

progress has been made to understand the signaling mechanism and to identify the 

substances that are capable of duplicating the cardioprotection induced by IP. These 

substances can be divided into two categories: naturally occurring but often noxious 

agents, e.g. endotoxin (Brown et al., 1989), interleukin-1 (Brown et al., 1990), tumor 

necrosis factor-α (Brown et al., 1992), leukemia inhibitory factor (Nelson et al., 1995), 

ROS (Sun et al., 1996),  and clinically applicable drugs including KATP channel opener 

(Sato et al., 2000), NO releasing agents (Takano et al., 1998b), adenosine receptor 

agonists (Baxter et al., 1994), and opioid receptor agonists (Fryer et al., 1999). Most of 

these forms of preconditioning have been shown to protect against lethal 

ischemia/reperfusion injury, and some have been demonstrated to protect against 

reversible postischemic dysfunction (Sun et al., 1996) and endothelial dysfunction 

(Kaeffer et al., 1997). Further efforts should be directed to promote more clinical studies 

based on the evidence from experimental studies in larger animals.  
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1.4 Hydrogen Sulfide (H2S) 

For many decades, H2S has been receiving attention as a toxic gas and environmental 

hazard. Its physiological importance was not recognized until the recent finding that H2S 

occurs naturally in mammalians. This led to the discovery of H2S as the third 

gasotransmitter after NO and CO. In the following content, recent works on H2S will be 

reviewed with an emphasis on its biological effects and its roles in different diseases.  

1.4.1 Physical and chemical properties of H2S 

Hydrogen sulfide (H2S) is a colorless, flammable and water soluble gas with smell of 

rotten eggs. The detectable level of this gas by human olfaction is 400 folds lower than its 

toxic level. In an aqueous solution, H2S is a weak acid which dissociates in the following 

reaction: H2S � H+ + HS- � 2H+ + S2-. According to the Henderson–Hasselbach 

equation, it will form approximately 18.5% H2S and 81.5% hydrosulfide anion (HS) in a 

physiological solution (pH 7.4, 37°C) (Dombkowski et al., 2004). H2S is a highly 

lipophilic molecule, which enables it to freely penetrate cells of all types and become 

biologically active.  

1.4.2 Endogenous generation and metabolism of H2S 

It is known that certain bacteria and archae can produce H2S. Recently, mammalian cells 

have also been found to be able to generate and metabolize H2S. For example, the H2S 

concentration in rat serum was reported to be around 46µM (Zhao et al., 2001). A higher 

level of H2S was detected in the brain and reported to be 50~160 µM (Abe and Kimura, 

1996).  However, such remarkably high concentrations of H2S have recently been 

questioned by some reviews (Li and Moore, 2008; Szabó, 2007) and a group of 
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researchers (Whitfield et al., 2008) who failed to detect H2S at micromolar level in the 

blood of a variety of animals. Indeed, the evanescent and reactive nature of this gas 

makes it difficult to accurately measure its concentration in an aqueous solution. A direct, 

reliable and stable means of detection needs to be developed before a conclusion can be 

drawn.  

Despite the discrepancy on the exact concentration of circulating sulfide, two 

pyridoxal-5-phosphate-dependent enzymes have been identified as the endogenous 

synthases of H2S, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). Both 

of them use L-cysteine as the main substrate and collectively are responsible for the 

majority of H2S production in the body (Stipanuk and Beck, 1982; Erickson et al., 1990; 

Bukovska et al., 1994). The expression of CBS and CSE has been detected in a board 

variety of cell types, including those from liver, kidney, heart, brain, skin fibroblastes, 

and lymphocytes (Wang, 2002). In some tissues, both CBS and CSE contribute to the 

local generation of H2S, whereas in others, one enzyme predominates.  CBS is the 

predominant H2S synthase in the brain and nervous system and is highly expressed in 

liver and kidney, while CSE is primarily expressed in the heart, liver, vascular and non-

vascular muscles.  

H2S in vivo is metabolized by oxidation in mitochondria before it is excreted through 

urine as free or conjugated sulfate (Beauchamp et al., 1984). Nevertheless the mechanism 

of the conversion of sulfide to sulfate or thiosulfate is poorly understood. The role of a 

sulfide oxidase and/ or glutathione has been proposed. A less important metabolic 

pathway involves methylation of sulfide by cytosolic S-methyltransferase. It is worthy of 

note that H2S can also be scavenged by methemoglobin (Beauchamp et al., 1984) or 
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metallo- or disulfide-containing molecules such as oxidized glutathione (Smith and 

Abbanat, 1966). Hemoglobin may act as a common sink for CO, NO and H2S (Wang, 

1998). It interacts with H2S by forming green sulfhemoglobin (Arp et al., 1987). Caution 

should be raised if this sink is saturated by one of the three gases; then its ability to bind 

other gases would be reduced (Searcy and Lee, 1998).   

1.4.3 Biological role of H2S  

1.4.3.1 H2S and the central nervous system (CNS) 

The presence of considerable amounts of H2S and its synthase CBS in the brains of 

several species including humans suggested a role for this gas in CNS function (Kimura, 

2002). H2S has been shown to facilitate induction of hippocampal long-term potentiation 

by increasing the sensitivity of NMDA receptors (Kimura, 2000). Interaction of H2S and 

NMDA receptors possibly involves cAMP-dependent protein kinase pathway, since in 

the same study NaHS increases cAMP levels in neuronal and glial cell lines and primary 

neuron cultures. In addition, H2S was also reported to induce protection against 

glutamate-mediated toxicity in cortical neurons (Kimura et al., 2006) and mouse 

hippocampal cell line (Kimura and Kimura, 2004), perhaps by multiple mechanisms 

including activation of KATP and Cl− channels and elevation of intracellular glutathione 

(Kimura et al., 2006). 

Deranged biosynthesis of H2S has been found to be associated with central nervous 

system diseases, such as stroke (Qu et al., 2006), Down syndrome (Kamoun et al., 2003), 

and perhaps also Alzheimer's disease (Eto et al., 2002). In the rat model of stroke (Qu et 

al., 2006), middle cerebral artery occlusion caused an increase in H2S level in the lesioned 

cortex as well as an increase in the H2S synthesizing activity. In keeping with this, 
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administration of a sulfide donor significantly increased the infarct volume. In subjects 

with Down syndrome, urinary thiosulfate (a metabolite of H2S) and erythrocyte 

sulfhemoglobin levels were both significantly increased compared with diet-matched 

controls (Kamoun et al., 2003). Further studies are warranted to determine whether the 

abnormity of H2S level is a cause or simply a consequence of these diseases.  

1.4.3.2 H2S and inflammation 

Extensive studies have recently been conducted to define the role of H2S in various 

inflammatory diseases. At micromolar concentrations, H2S can induce an upregulation of 

anti-inflammatory and cytoprotective genes including haem oxygenase-1 in pulmonary 

smooth muscle cells in vivo (Qingyou et al., 2004) and in macrophages in vitro (Oh et al., 

2006). H2S also reduces LPS-stimulated TNF-α and NO formation in cultured microglial 

cells (Hu et al., 2006).  In animal models of inflammation, administration of H2S donor 

has been effective in reducing carrageenan-induced paw edema and air pouch-induced 

leukocyte infiltration (Zanardo et al., 2006), the commonly-used systems to test the anti-

inflammatory effects of experimental compounds. The protective effect of H2S was 

attenuated by pretreatment with glibenclamide, suggesting the involvement of KATP 

channels. Several other studies demonstrated that chemically linking an H2S-donor 

species to known anti-inflammatory drugs can improve the therapeutic profile of the 

compound. Using a rat model of endotoxin-induced inflammation, Li and colleagues 

reported that a sulfide-releasing compound, S-diclofenac, enhanced the anti-inflammatory 

effect of the parent molecule and exhibited less gastric toxicity (Li et al., 2007). Similarly, 

in the study by Distrutti et al., the H2S-releasing derivative of mesalamine demonstrated 

superior anti-inflammatory and antinociceptive efficacy compared with the base 
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mesalamine molecule in the model of postinflammation hypersensitivity (Distrutti et al., 

2006).  

However, it is paradoxical that an upregulation in H2S-synthesizing activity or plasma 

H2S level was observed in a large body of studies using different inflammation models. 

These include carrageenan-induced paw oedema in rats (Bhatia et al., 2005a), a mouse 

model of pancreatitis (Bhatia et al., 2005b), rodent model with endotoxic shock (Collin et 

al., 2005; Li et al., 2005), and a polymicrobial sepsis model in mice with cecal ligation 

and puncture (Zhang et al., 2006). Pharmacological inhibitor of H2S biosynthesis, DL-

propargylglycine (PAG) (Marcotte and Walsh, 1975), was used in some of these studies 

and shown to be able to attenuate the inflammatory responses. In a rat model of 

endotoxemia, PAG prevented the increases in the serum levels of liver and pancreas 

injury markers and reduced the tissue content of myeloperoxidase (Collin et al., 2005). In 

a model of cecal ligation and puncture, PAG treatment reduced tissue neutrophil 

infiltration and improved liver and lung histology (Zhang et al., 2006). In a carrageenan-

induced inflammation model in the rat, PAG treatment dose-dependently reduced paw 

edema and neutrophils infiltration (Bhatia et al., 2005a). 

Interestingly, both inhibitor and donor of H2S were shown to exert beneficial effects 

in the same experimental model of disease, for instance, in the carrageenan paw edema 

model (Bhatia et al., 2005a; Zanardo et al., 2006).  While one study demonstrates anti-

inflammatory effects of H2S (Zanardo et al., 2006), another one argues for a pro-

inflammatory role of H2S in the same model (Bhatia et al., 2005a). A reasonable 

explanation for these conflicting results is that endogenous sulfide at low and high local 

concentrations exert opposing effects, with low concentration preventing and high 
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concentration promoting inflammation. A similar paradox has been previously noted with 

inhibitors versus donors of NO — both of them being effective in the carrageenan paw 

edema models (Handy and Moore, 1998; Fernandes et al., 2002). Clearly, there is an 

exquisite balance and a complex regulation of pathophysiological responses by 

endogenous and exogenous gasotransmitters (Szabó, 2007). 

1.4.3.3 H2S and cardiovascular system 

It was conventionally held that H2S interfered with cardiovascular function as a result of 

the secondary anoxia rather than a direct action of the gas on cardiac myocytes or 

vascular smooth muscle cells (SMCs) (Reiffenstein et al., 1992). However, this view has 

been overturned by the finding of noticeable amount of H2S and its synthase CSE in the 

cardiovascular system.  

As early as in 1997, expression of CSE and endogenous production of H2S have been 

detected in rat portal vein and thoracic aorta (Hosoki et al., 1997). A more recent study by 

Zhao et al. revealed that CSE is the only H2S-generating enzyme in rat mesenteric artery 

and other vascular tissues, with expression levels of CSE mRNA ranked in an order of 

pulmonary artery > aorta > tail artery > mesenteric artery (Zhao et al., 2001). On the other 

hand, Chen et al. found no activity or expression of CBS in human atrium and ventricle 

tissues (Chen et al., 1999). The activity and/or expression of CBS were also lacking in 

human internal mammary arteries, saphenous veins, coronary arteries, or aortic arteries 

(Chen et al., 1999; Bao et al., 1998). Thus, only CSE appears to be responsible for the 

generation of H2S in cardiovascular tissues. 

The effect of H2S on vascular systems has recently been investigated in several in-

depth studies. H2S at physiologically relevant concentrations induces relaxation in portal 
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vein (Hosoki et al., 1997), aorta (Zhao et al., 2001), and mesenteric artery beds of rats 

(Cheng et al., 2004). In one study by Zhao et al. (Zhao et al., 2001), an intravenous bolus 

injection of H2S at 2.8 and 14 µmol/kg body weight provoked a transient decrease in 

mean arterial blood pressure of anaesthetized rats. At the tissue level, H2S induced a 

concentration-dependent relaxation of the phenylephrine (PHE)-precontracted rat aortic 

tissues (IC50, 125 µM). The investigators also provided significant insight into the 

mechanism of the H2S-induced vasorelaxant effect (Zhao et al., 2001). They found that 

when isolated rat aortic tissues were precontracted with 20 or 100 mM KCl, the maximum 

vascular relaxation induced by H2S was 90% and 19%, respectively. This difference in 

relaxation potency of H2S may represent the portion of relaxation possibly mediated by 

potassium conductance. Furthermore, the effect of H2S on aortic tone was only 

antagonized by the blocker of KATP channel, glibenclamide, but not blockers of other 

types of potassium channels, indicating that the vasorelaxant effect of H2S was KATP-

dependent. Meanwhile, they demonstrated that H2S directly increased KATP channel 

currents and hyperpolarized membrane in isolated SMCs. Taken together, all these lines 

of evidence point to that H2S
 is an important endogenous vasorelaxant factor and gaseous 

opener of KATP channels in vascular SMCs. 

In spite of the detection of CSE in myocardial tissues, the effect of H2S on heart was 

relatively less known. Geng et al. observed a negative inotropic effect of H2S in both in 

vitro and in vivo experiments, and the effect could partly be blocked by glibenclamide 

(Geng et al., 2004). As discussed by the investigators, in addition to direct effect of H2S 

on myocardium, the cardiac contraction could also be affected by its peripheral vascular 

effect, because H2S dilated arteries and veins, reducing central venous pressure, which 
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could result in a decrease of the venous return and reduction of cardiac pre- and post-

loads. Although this study is suggestive of a role for H2S in regulating cardiac function, 

the significance of these observations should further be determined in pathological 

settings.  

1.4.3.4 Other effects of H2S 

Sulfide may also have therapeutic potential in the areas of angiogenesis and wound 

healing. Studies have demonstrated that H2S stimulates endothelial cell growth, adhesion, 

migration and promotes scratched wound healing in vitro, probably through a PI3-K/Akt 

pathway (Cai et al., 2007). Intraperitoneal injection of NaHS for 7 days significant 

increases neovascularization in rats. Other studies showed that sulfide donors promote 

gastric ulcer healing in rodent models (Wallace et al., 2007; Yonezawa et al., 2007), but 

the effect did not appear to depend on NO synthesis or KATP opening.  

1.4.3.5 Interaction of H2S and other gasotransmitters 

H2S is the third gasotransmitters together with NO and CO. It is not surprising that these 

mediators interact with one another in regulating cell functions, cardiovascular responses 

and inflammatory/immune functions. Published data have shown that the endogenous 

production of H2S from rat aortic tissues is enhanced by NO donor treatment (Zhao et al., 

2001). The NO donor also enhances the expression level of CSE in cultured vascular 

SMCs. Hosoki et al. (Hosoki et al., 1997) observed that low concentrations of H2S 

(30µM) markedly enhanced the vasorelaxant effect of the NO donor sodium nitroprusside 

(SNP). On the contrary, pretreating aortic tissues with a higher dose of H2S (60µM) 

inhibited the vasorelaxant effect of SNP. Apparently, there is a complex crosstalk 

between H2S and NO, where direct action on synthases may be involved.  
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Non-vascular aspects of NO–H2S interactions have also been identified: it seems that 

NO-related effects contribute to the cytoprotective and antinociceptive effects of sulfide 

(Fiorucci et al., 2006). In macrophages, H2S inhibits the expression of iNOS but 

upregulates the expression of heme oxygenase-1 (Oh et al., 2006). H2S also acts as a 

scavenger and neutralizer of peroxynitrite (Whiteman et al., 2004), a key player in the 

cytotoxic effects of NO.  

CO may be another factor capable of interacting with H2S and NO. As noted above, 

H2S can also upregulate HO1, and can therefore induce a delayed production of CO. 

Given that all three bind avidly to hemoglobin, saturation of hemoglobin with one could 

lead to enhanced plasma levels and biological effects of the others (Wang, 1998). Indeed, 

saturation of erythrocytes with CO results in elevated plasma H2S levels (Searcy and Lee, 

1998). Additional studies are needed to examine the various interplays between the three 

gasotransmitters in health and disease, and to identify areas in which pharmacological 

modulation of these agents (alone or in combination) may provide therapeutic benefit 

(Szabó, 2007). 

1.5 Objectives and significance of the present study 

Studies have suggested that H2S plays a part in regulating heart contractility under 

physiological situation (Geng et al., 2004). However, the effect of H2S on the heart under 

pathological situation, such as ischemia, is still unknown. To date, most of the known 

effects of H2S are mediated through an action on KATP channels. Considering that 

opening of KATP channels is an essential event for development of ischemic 

preconditioning-induced cardioprotection and this protection could be mimicked by 

pharmacological opener of KATP channels, it merits study to investigate whether H2S 
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could exert a similar beneficial effect through opening KATP channels on a heart 

undergoing ischemic challenge.  

Therefore the objective of current study was to delineate the role of H2S in the 

cardioprotection against ischemia injury. To be specific, 1) endogenous H2S levels were 

assessed in both normal and ischemia-insulted myocardial tissues to examine whether 

endogenous H2S production altered during ischemia insult; 2) inhibitors of H2S 

biosynthesis were employed to investigate whether endogenous H2S contributed to the 

cardioprotection induced by ischemic preconditioning; 3) a sulfide donor was applied in 

an attempt to observe whether exogenous H2S could increase the resistance of myocardial 

tissues to ischemic attacks. Both in vitro and in vivo models were used to verify these 

issues at cellular level and the whole animal level. At the cellular level, isolated 

cardiomyocyte model was adopted due to its advantage in studying signaling mechanisms 

without confounding factors from the whole circulation. At whole animal level, a rat 

model of myocardial infarction was employed, as rats share considerable similarity on the 

cardiovascular system with humans.  

Accordingly, the findings from current study were expected to contribute to the 

knowledge in three areas: pathophysiology of cardiac ischemia, mechanisms of ischemic 

preconditioning-induced cardioprotection, and the biological profile of H2S. The results 

not only revealed a novel mechanism for ischemic preconditioning-induced 

cardioprotection, but also identified a simple and effective intervention approach for 

ischemic heart diseases. The results from in vivo experiments also provided valuable 

information for the translation from the bench to the bedside. 
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Chapter 2 Endogenous H2S mediates the cardioprotection induced 

by ischemic preconditioning in rat cardiomyocytes 

2.1 Introduction 

Hydrogen sulfide (H2S) represents the most recently identified endogenous gaseous 

messenger (Wang, 2002). The detection of plentiful H2S synthase CSE in the heart (Geng 

et al., 2004) suggests that endogenous H2S production is necessary for a well-functioned 

heart. However, it is not clear how the endogenous H2S level is associated with the 

heart’s condition. Thus we investigated whether there is a difference in endogenous H2S 

production between healthy cardiomyocytes and myocytes undergoing ischemia 

challenge.  

Ischemic preconditioning (IP) refers to the phenomenon that previous exposure to 

brief sublethal ischemia provides protection on the heart against subsequent severe 

ischemia insults (Murry et al., 1986). It is a powerful natural cardioprotective mechanism. 

A pivotal signaling event during IP is the opening of KATP channels (Sanada et al., 2004). 

The ability of H2S to open KATP channels in smooth muscle cells (Zhao et al., 2001) 

prompted us to investigate whether endogenous H2S also plays a part in the IP-induced 

cardioprotection. 

2.2 Materials and methods 

2.2.1 Isolation of adult rat cardiomyocytes 

Sprague-Dawely rats (190~210 g, male) were anesthetized with intraperitoneal (i.p.) 

injection of a combination of ketamine (75mg/kg) and xylazine (10mg/kg). Heparin 

(1000 IU) was administered i.p. to prevent coagulation during removal of the heart. The 
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heart was quickly excised, mounted on a Langendorff apparatus, and perfused in a 

retrograde fashion via the aorta with calcium-free Tyrode's solution (in mmol/L): 137 

NaCl, 5.4 KCl, 1 MgCl2, 10 HEPES, 10 Glucose, pH 7.4 at 37 °C. After 5 min the 

perfusion solution was changed to the Tyrode's solution containing 1 mg/ml collagenase 

type I and 0.28 mg/ml protease (type XIV) and perfused for a further 25-30 min. The 

perfusion solution was then changed to Ca2+-Tyrodes solution containing 2 × 10−4 mol/L 

CaCl2 without enzymes for an additional 5 min. The ventricular tissue was then cut into 

small pieces in a Petri dish containing pre-warmed Ca2+ Tyrode's solution and shaken 

gently to ensure adequate dispersion of dissociated cardiac myocytes. A 2.5 × 10−4 meter 

mesh screen was used to separate the isolated cardiac myocytes from cardiac tissue. The 

cells were then washed three times in Ca2+-Tyrode's solution and collected by 

centrifugation (500 rpm, for 1 min). Ca2+ concentration of the Tyrode's solution was 

increased gradually to 1.25 × 10−3 mol/L in 20 min. More than 80% of the cells were rod-

shaped and impermeable to trypan-blue. The cells were allowed to stabilize for 30 min 

before any experiments. 

2.2.2 Simulation of ischemia and ischemia preconditioning  

In the present study, we simulated ischemia with a pH 6.6 glucose-free Kreb’s buffer 

containing 10 mM 2-deoxy-D-glucose (2-DOG), an inhibitor of glycolysis (Macianskiene 

et al. 2001), and 10 mM sodium dithionite (Na2S2O4), an oxygen scavenger (Otter and 

Austin, 2000). This simulated ischemia solution produces a mixture of effects including 

metabolic inhibition, anoxia, and acidosis. When the solution was used for 

preconditioning purpose, the dose of 2-DOG and Na2S2O4 were halved to generate a 

milder ischemic condition.  
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2.2.3 Experimental protocol  

In the present study, we adopted two well-established preconditioning models to observe 

respectively the first and second phase of IP’s cardioprotection. For the induction of early 

phase of IP (Ho et al., 2002), cardiomyocytes were subjected to three cycle of brief 

ischemia and reperfusion, with each cycle composed of 3 min of preconditioning 

ischemia and 5 min of reperfusion with normal Dulbecco's modified Eagle's medium 

(DMEM) (shown in Fig 2-2A). Lethal ischemia was initiated subsequently and lasted for 

9 min, followed by reperfusion for 10 min. For the induction of late phase of IP (Nayeem 

et al., 1997; Wu et al., 1999), cells were subjected to a single episode of 30 min of 

preconditioning ischemia. Lethal ischemia was initiated 20 hours later and followed by 

10 min of reperfusion (shown in Fig. 2-4A). In each experiment, cells were divided into 

four groups: vehicle-treated group (VP), IP-treated group (IP), and either DL-

propargylglycine (PAG) or β-cyano-L-alanine (BCA) plus IP-treated groups (PAG+IP or 

BCA+IP). In the latter two groups, 2 × 10−3 mol/L PAG or 2 × 10−3 mol/L BCA were 

applied during IP. Cells in VP group were incubated with DMEM during preconditioning 

ischemia. 

2.2.4 Measurement of H2S concentration 

The culture media of cardiomyocytes were collected for measurement of endogenous H2S 

production. 75 µL media from each sample was added into an Ependorff tube that already 

contained 450 µL deionised water and 250 µL zinc acetate (1% w/v). Then N, N-

dimethyl-p-phenylenediamine sulphate (20 µM in 7.2 mol/L HCl, 133 µl) and FeCl3 

(30 µM in 1.2 mol/L HCl, 133 µL) were added in sequence for color development at 

room temperature. After 10 min, trichloroacetic acid (10% w/v, 250 µL) was added to 
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precipitate any protein that might be present in the media. The tubes were then 

centrifuged (10,000 × g) for 3 min and 300 µl aliquots from the resulting supernatants 

were transferred into a 96-well plate. Absorbance was determined at 670 nm using a 96 

well microplate reader (Tecan Systems Inc., U.S.A.). 

2.2.5 Assessment of cell viability and morphology 

Trypan blue exclusion was used as an index of myocyte viability (Zhou et al., 1996; 

Hiebert and Ping, 1997). After cells were incubated with 0.4% (w/v) trypan blue dye for 3 

min, living cells were unstained and termed nonblue cells. Nonblue cells/total cells were 

determined in a hemocytometer chamber using a light microscope (10x magnification). 

Cell morphology was also assessed by microscopic examination (Armstrong and Ganote, 

1994; Zhou et al., 1996). Percentage of rod-shaped (length/width ratio, >3:1) cells were 

determined as an indicator of the percentage of healthy cardiomyocytes. 200-500 cells in 

each of 5-7 cultures were tested for each group. 

2.2.6 Assessment of cellular injury 

Lactate dehydrogenase (LDH) release was used as an index of cellular injury (Nayeem et 

al., 1997). The activity in the cultured medium represents LDH release from the cultured 

ventricular myocytes. Both culture medium and cell lysates (prepared with lysis buffer 

containing 1% triton-X100) were collected for determination of LDH activity. LDH assay 

was performed using a commercially available kit (Sigma). The assay was based on the 

reduction of NAD catalyzed by LDH. The reduced NAD (NADH) was utilized in the 

stoichiometric conversion of a tetrazolium dye. The absorbance at a wave length of 

490nm was measured spectrophotometrically with a microplate reader (Tecon Systems 

Inc. U.S.A.). The background absorbance at 690nm was subtracted from the absorbance 
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at 490nm. The results were presented as LDH released into the medium in terms of 

percentage of the total LDH activity (medium + cell lysate) and normalized to 100% for 

VP group.   

2.2.7 Measurement of intracellular Ca2+ ([Ca2+] i) 

Ventricular myocytes were incubated with fura-2/AM (4 × 10−6 mol/L) (25 min) in 

Tyrode's solution supplemented with 1.25 × 10−3 mol/L CaCl2. The unincorporated dye 

was removed by washing the cells twice with fresh incubation solution. Loaded cells 

were kept at room temperature (24 °C-26 °C) for 30 min to allow the fura-2/AM in the 

cytosol to de-esterify. 

Loaded ventricular myocytes were then transferred to the stage of an inverted 

microscope (Nikon) in a superfusion chamber at room temperature. The inverted 

microscope was coupled with a dual-wavelength excitation spectrofluorometer 

(Intracellular imaging Inc, USA). Myocytes were perfused with Krebs' bicarbonate buffer 

(KB buffer, mmol/L; 117 NaCl, 5 KCl, 1.2 MgSO4, 1.2 KH2PO4, 1.25 CaCl2, 25 

NaHCO3, 11 glucose, with 1% w/v dialyzed BSA) and gassed with 95% O2/5% CO2. The 

myocytes selected for the study were rod-shaped with clear striations. These cells 

exhibited synchronous contraction (twitch) in response to suprathreshold (4 ms, 0.2 Hz) 

stimuli delivered by a stimulator (Grass S88) via two platinum field-stimulation 

electrodes immersed in the bathing fluid. Fluorescent signals obtained at 340 nm (F340) 

and at 380 nm (F380) excitation wavelengths were stored in a computer for data 

processing and analysis. The F340/F380 ratio was used to indicate [Ca2+] i level in the 

myocytes. 

2.2.8 Statistical Analysis.  
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Values presented are mean ± SEM. One-way ANOVA was used with a post hoc 

(Bonferroni) test to determine the difference between groups. The significance level was 

set at p < 0.05. 

2.2.9 Drugs and chemicals 

Type 1 collagenase, protease XIV, 2-DOG, PAG, BCA, N,N-dimethyl-p-

phenylenediamine sulfate, FeCl3, and trypan blue dye were purchased from Sigma-

Aldrich (St. Louis, MO). Fura-2 was purchased from Invitrogen (Carlsbad, CA). All 

chemicals were dissolved in distilled water except fura-2/AM, which was dissolved in 

DMSO at a final concentration < 0.1% (w/v) 

2.3 Results 

2.3.1Endogenous H2S production in rat cardiomyocytes was suppressed during 

ischemia and partly restored by IP 

To investigate whether endogenous H2S level is altered during ischemia, H2S 

concentration in cell culture medium after 9 min of ischemia was determined. The 

experimental procedures are shown in Fig. 2-1A and described under Materials and 

Methods. As shown in Fig. 2-1B, 9 min of ischemia significantly decreased endogenous 

H2S level to 23.7 ± 6.9% of that in VP group (n = 10, p < 0.001). Interestingly, 

preconditioning with three cycles of ischemia significantly attenuated the inhibitory effect 

of ischemia on H2S production (IP, 49.6 ± 9.5%, n = 5, p < 0.05 versus ischemia group). 

These data suggest that IP may protect the heart against ischemia at least partly by 

enhancing the endogenous production of H2S. 
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2.3.2 Early cardioprotection induced by IP was blocked by CSE inhibitors  

To determine whether endogenous H2S plays a part in the IP-induced early 

cardioprotection, PAG and BCA were used as inhibitors of endogenous H2S synthase and 

applied according to the protocol shown in Fig. 2-2A. We assessed the protective effects 

of 3 episodes of brief ischemia and reperfusion on cell viability and cell morphology in 

the presence and absence of CSE inhibitors. After 9 min of ischemia followed by 10min 

of reperfusion, the percentage of nonblue cells and percentage of rod-shaped cells in IP 

Figure 2-1 Effects of ischemia and IP on endogenous H2S production. (A) Experimental design. 
(B)Endogenous H2S production in normal rat cardiomyocytes (Con), cardiomyocytes undergoing 
ischemia (Ischemia), and cardiomyocytes subjected to IP (IP). Mean ± S.E.M.; n = 5 to 10. *** , p < 
0.001 versus Control; +, p < 0.05 versus ischemia. 
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group were significantly higher than those in vehicle-preconditioned (VP) group (Fig. 2-2 

B & C). The presence of 2 x 10-3 mol/L PAG or 2 x 10-3 mol/L BCA during IP reversed 

the cardioprotection on cell viability and morphology, while neither PAG nor BCA alone 

affected cell viability (control, 69.2 ± 3.2%; PAG, 63.4 ± 2.4%; BCA, 65.1 ± 1.7%, all n 

= 5) or morphology (control, 62.8 ± 1.2%; PAG, 60.3 ± 1.8%; BCA, 59.2 ± 1.2%, all n = 

5). 

 

 

 

 

 

 

Figure 2-2 Effects of early IP on cell viability and cell morphology in the presence and absence of 
CSE inhibitors. (A) Experimental protocol. (B) Cell viability at 10 min into reperfusion in VP, IP, 
IP+PAG, and IP+BCA. (C) Percentage of rod-shaped cells at 10 min into reperfusion in VP, IP, 
IP+PAG, and IP+BCA. Mean ± S.E.M., n = 6 to 18 cultures of 500 cells each. ** , p < 0.01 versus 
VP; +, p < 0.05 versus IP. 
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Electrical stimulation mimics the arrival of an action potential generated from the 

sino-atrial node of the heart, triggering the same cascade of events i.e.-membrane 

depolarization, influx of Ca2+, Ca2+ release from the SR and finally muscle contraction. 

We observed the recovery of electrically-induced [Ca2+] i transients (E[Ca2+] i) during 

ischemia and reperfusion to investigate whether inhibition of endogenous H2S formation 

would affect the cardioprotection of IP on cell function. As shown in Fig. 2-3A, the 

amplitude of E[Ca2+] i in VP group following ischemia and reperfusion was reduced to 

20.2 ± 3.8% of its initial amplitude. IP remarkably attenuated the wane of E[Ca2+] i during 

ischemia and reperfusion and [Ca2+] i transients in IP group was able to recover to 70.0 ± 

3.5% of its initial amplitude. Both PAG and BCA reversed this beneficial effect of IP 

(PAG, 34.8 ± 3.6%, n = 19; BCA, 37.8 ± 4.6%; n = 10, p < 0.001; Fig. 2-3B), while they 

did not produce significant effect on E[Ca2+] i when applied alone. These data suggest that 

endogenous H2S mediated the early phase of cardioprotection caused by IP on both cell 

viability and cell function.  
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Figure 2-3 Effects of early IP on recovery of electrically-induced [Ca2+] i transients (E[Ca2+] i) in 
the presence and absence of CSE inhibitors. Experimental procedures used were the same as those 
in Fig. 2-2A. (A) Representative tracings of E[Ca2+] i in VP and IP groups during ischemia and 
reperfusion. (B) Amplitude of E[Ca2+] i transients at 5 min of reperfusion. Mean ± S.E.M., n = 10 
to 26; *** , p < 0.001 versus VP; +++, p < 0.001 versus IP. 
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2.3.3 Late cardioprotection induced by IP was blocked by CSE inhibitors  

This series of experiments was designed to determine whether endogenous H2S is 

involved in the late phase of cardioprotection induced by IP. Experimental procedures 

were shown in Fig. 2-4A. Rat cardiomyocytes were subjected to I/R injury 20 hours after 

preconditioning ischemia. IP significantly increased the percentage of the non-blue cells 

per total number of cells at 10 min into reperfusion (31.8 ± 3.0%, n = 10, P < 0. 01) as 

compared with that found in VP group (20.8 ± 1.7%, n = 13). Pretreatment with PAG 

(2 × 10−3) mol/L or BCA (2 × 10−3 mol/L) blocked the cardioprotective effect of IP (Fig. 

2-4B).  

To further substantiate the role of endogenous H2S, we determined cellular injury 

using LDH release as an index. As shown in Fig. 2-4C, IP significantly decreased cellular 

injury caused by severe ischemia insults. Pretreatment with PAG or BCA blocked this 

effect (Fig. 2-4C).  
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Figure 2-4 Effects of late IP on cell viability and morphology in the presence and absence of 
CSE inhibitors. (A) Experimental protocol. (B) Cell viability at 10 min into reperfusion in VP, 
IP, IP+PAG, and IP+BCA. (C) Percentage of rod-shaped cells at 10 min into reperfusion in VP, 
IP, IP+PAG, and IP+BCA. Mean ± S.E.M., n = 6 to 18 cultures of 500 cells each. ** , p < 0.01 
versus VP; +, p < 0.05 , ++, p < 0.01 versus IP. 
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The electrically-induced [Ca2+] i transients were also traced during reperfusion to 

examine the functional status of the cardiomyocytes. IP significantly improved the 

recovery of E[Ca2+] i which was compromised during ischemia (Fig. 2-5 VP & IP). Again, 

this beneficial effect was reversed by either of the H2S synthesis inhibitors, PAG 

(2 × 10−3 mol/L) or BCA (2 × 10−3 mol/L) (Fig. 2-5). Taken together, these data suggest 

that endogenous H2S was also involved in the late cardioprotection induced by IP. 

 

 

 

 

 

 

 

2.3.4 CSE inhibitors reduced endogenous H2S level in rat cardiomyocytes  

This experiment was designed to confirm that the loss of IP cardioprotection observed in 

the presence of CSE inhibitors was indeed due to a decreased endogenous H2S level in 

the cell. As shown in Fig. 2-6, incubating cells with PAG or BCA at 2 x 10-3 mol/L for 40 

Figure 2-5 Effects of late IP on recovery of electrically-induced [Ca2+] i transients (E[Ca2+] i) in 
the presence and absence of CSE inhibitors. Experimental procedures used were the same as 
shown in Figure 2-4A. The amplitude of E[Ca2+] i in each group was determined at 5 min of 
reperfusion. Values are mean ± SEM; The number of myocytes sampled for calcium 
measurements were 9 (VP), 36 (IP), 38 (PAG+IP) and 42 (BCA+IP). ***P < 0.001 vs VP; 
+++P < 0.001 vs IP.  
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min, the conditions applied in the above experiments, significantly decreased H2S 

production by 78.8 ± 7.1 (n = 5) and 60.4 ± 7.6% (n = 5), respectively.  

 

 

 

 

2.3.5 Sustained inhibition of endogenous H2S production caused cell injury.  

The above findings showed that inhibition of endogenous H2S disabled the 

cardioprotection caused by IP during ischemia. However, the consequence of sustained 

inhibition of endogenous H2S under physiological situation is unknown. Fig. 2-7 shows 

that incubation of the cardiac myocytes with PAG or BCA for 20 hours increased cellular 

injury index compared with the baseline level in normal cardiomyocytes. These data 

suggest that sustained inhibition of endogenous H2S causes cell injury and that 

endogenous H2S plays an important role in maintaining cell integrity during 

physiological situation. 

 

Figure 2-6 Effects of CSE inhibitors on endogenous H2S production. Mean ± S.E.M.; n = 5 to 10. 
*** , p < 0.001 versus Con.  
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2.4 Discussion 

The present study was primarily aimed to elucidate the role of endogenous H2S in IP-

induced cardioprotection. Since CSE is the main enzyme generating H2S in the heart 

(Zhao et al. 2001), CSE inhibitors were used. Of the inhibitors employed, PAG has been 

most studied. This compound causes an irreversible, mechanism-based inhibition of CSE 

enzyme activity in vitro (Johnston et al., 1979) and, when administered to rats, produces 

an almost complete inhibition of liver CSE enzyme activity (measured ex vivo) (Porter et 

al., 1996; Uren et al., 1978). Similarly, BCA has also been reported to cause potent and 

reversible inhibition of CSE activity (Uren et al., 1978; Pfeffer et al., 1967). In the 

present study, we examined the effects of PAG and BCA on the endogenous H2S 

production by measuring the concentration of H2S in the culture medium. Both drugs 

effectively reduced the H2S level in the culture medium, indirectly indicating a drop of 

intracellular H2S level. 

Figure 2-7 Effects of CSE inhibitors on cellular injury index. Cells were incubated with PAG and 
BCA for 20 hours. Mean ± SEM, N = 7-8. *P < 0.05 **P < 0.01 vs VP.  
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Based on the reliable effects of these tool drugs, the present study established an 

obligatory role of endogenous H2S
 in the cardioprotection afforded by IP. IP protects the 

cardiomyocytes against ischemia-induced cell death and injury as well as impairment on 

cell function. Inhibition of H2S biosynthesis with either PAG or BCA significantly 

diminished the protection observed in both the early and late phase of IP. Moreover, we 

also observed that H2S production was suppressed in cardiomyocytes subjected to 

ischemia. Preconditioning the cells with brief ischemia partly restored endogenous H2S 

level. Taken together, our data provide the first evidence that endogenous H2S is 

necessary for the development of both early and late cardioprotection of IP. 

It appears that endogenous H2S level determines the condition of the cardiomyocytes, 

since decreased H2S level is associated with ischemia and increased H2S level by IP is 

associated with cardioprotection. Indeed, we found that sustained inhibition of 

endogenous H2S production caused cell injury, suggesting that even under physiological 

situation, maintenance of certain endogenous H2S level is important for the wellness of 

the cardiomyocytes.  

Our results also demonstrated that IP was able to boost H2S production. Like the role 

of NO in the IP cardioprotection, the increased H2S in preconditioned cardiomyocytes is 

likely to contribute to the cardioprotection by activating some central components of the 

signaling pathway. Thus it is intriguing to observe whether direct preconditioning the 

cells with exogenous H2S is sufficient to induce cardioprotection without IP. 

In conclusion, the present study reveals a beneficial role of endogenous H2S in 

cardiomyocytes and provokes more interest to investigate the effect of exogenous H2S on 

the heart.   
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Chapter 3 H2S preconditioning induces biphasic cardioprotection 

against ischemic injury in rat cardiomyocytes 

3.1 Introduction 

We investigated in this series of experiments whether pretreatment with H2S before 

ischemia, namely, H2S preconditioning (SP), is able to attenuate ischemia-associated cell 

damages and its underlying mechanisms.  

3.2 Materials and methods 

3.2.1 Experimental protocol  

In the present study, H2S preconditioning was conducted following the same protocol 

used for induction of IP except for the replacement of IP buffer with Kreb’s buffer 

containing different concentrations of H2S. For the induction of early phase of SP, 

cardiomyocytes were subjected to three cycle of SP and reperfusion, with each cycle 

composed of 3 min of SP and 5 min of reperfusion with normal Dulbecco's modified 

Eagle's medium (DMEM). Lethal ischemia was initiated subsequently and lasted for 9 

min, followed by reperfusion for 10 min (shown in Fig 3-1A). For the induction of late 

phase of SP, cells were subjected to 30 min of SP. Lethal ischemia was initiated 20 hours 

later. To investigate the signal mechanisms for SP, cells in separated groups were treated 

respectively with non-selective KATP channel blocker glibenclamide (10−5 mol/L), 

sarcKATP blocker HMR-1098 (2 × 10−5 mol/L), mitoKATP bocker 5-HD (10−4 mol/L), NO 

synthase inhibitor L-NAME (10−4 mol/L), and PKC inhibitor chelerythrine (3 × 10−6 

mol/L) 15min before and during SP. Cells in VP group were incubated with DMEM 

during preconditioning ischemia. 
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3.2.2 Other methods 

Isolation of cardiomyocytes, simulation of ischemia, assessment of cell viability and 

morphology, intracellular Ca2+ imaging have been described in the Materials and 

Methods in Chapter 2.  

3.2.3 Statistical analysis 

Values presented are mean ± S.E.M. One-way analysis of variance was used with a post 

hoc (Bonferroni) test to determine the difference between groups. The significance level 

was set at p < 0.05. 

3.2.4 Drugs and chemicals 

L-NAME, 5-HD and chelerythrine chloride were purchased from Sigma Chemical Co, 

USA. HMR-1098 was a generous gift from Aventis Pharma Deutschland GmbH 

(Frankfurt, Germany). Glibenclamide was obtained from Tocris Cookson Ltd, UK. All 

chemicals were dissolved in deionized water except glibenclamide, which was dissolved 

in DMSO at a final concentration <0.1% (w/v). 
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3.3 Results 

3.3.1 SP induced immediate cardioprotection in rat cardiomyocytes  

Cell viability and morphology were assessed in both H2S-preconditioned cells (SP) and 

vehicle-preconditioned cells (VP) 10 min into reperfusion after lethal ischemia (Fig. 3-

1A). As shown in Fig. 3-1B, three cycles of 5 min of exposure to different concentrations 

of NaHS (10-6, 10-5, 10-4, and 10-3 mol/L) increased the percentage of nonblue cells in a 

concentration-dependent manner. Cell viability in SP was significantly higher than that in 

VP group when NaHS concentration reaches 10-5 mol/L, and the maximum protective 

response was observed at 10-4 mol/L of NaHS (VP, 32.6 ± 2.1%; 10-5 mol/L NaHS, 45.9 

± 2.3%; 10-4 mol/L NaHS, 47.9 ± 2.2%; all n = 7; Fig. 3-1B). 

 To compare the responses in term of morphology change, the percentage of rod-

shaped cells was determined. As shown in Fig. 3-1C, pretreatment with NaHS at 10-5 

mol/L and 10-4 mol/L preserved a greater percentage of rod-shaped cells than VP group 

(VP, 28.9 ± 3.3%; 10-5 mol/L NaHS, 41.3 ± 2.8%; 10-4 mol/L NaHS, 43.4 ± 3.1%; all n = 

7). These data indicate that H2S preconditioning is able to produce an IP-like effect on 

cell viability and morphology. 

 

 

 

 

 



60 

 

 

 

 

 

 

 

 

Figure 3-1 Early cardioprotection induced by SP in rat cardiomyocytes. (A) Experimental design. 
Solid fields, simulated ischemia; open fields, DMEM; slashed fields, DMEM containing different 
concentrations of NaHS. (B) Concentration-dependent effect of SP on cell viability. Nonblue cells 
were living cells. Mean ± S.E.M.; n = 7 cultures of 500 cells each. ++, p < 0.01; +++, p < 0.001 versus 
VP. (C) Concentration-dependent effect of SP on cell morphology. Rod-shaped cells per total cells 
were counted. Mean ± S.E.M.; n = 7 cultures of 500 cells each. +, p < 0.05; ++, p < 0.01 versus VP.  
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To determine the functional status of the cells, electrically induced [Ca2+] i transients 

(E[Ca2+] i) before, during, and after ischemia were recorded. As shown in Fig. 3-2, the 

amplitude of E[Ca2+] i in VP group was decreased by ischemia and reperfusion to 25.8 ± 

3.0% of the amplitude of normal E[Ca2+] i transients in control group. Preconditioning 

cells with H2S significantly attenuated this effect, suggesting that SP improved the cell 

function recovery after ischemia and reperfusion injury.  

 

 

 

 

Figure 3-2 Effect of SP on recovery of electrically induced [Ca2+] i transients (E[Ca2+] i) in single 
cardiomyocytes. (A) Representative tracings of E[Ca2+] i in VP and SP groups. (B) Group results 
showing the amplitudes of E[Ca2+] i in normal myocytes (Con) and myocytes in VP and SP groups at 
10 min into reperfusion. Values are mean ± S.E.M.; n = 25. *** , p < 0.001 versus the value in the Con 
group; +++, p < 0.001 versus the value in the VP group.  
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3.3.2 SP induced late cardioprotection in rat cardiomyocytes 

To investigate whether H2S was able to produce late cardioprotection against ischemic 

injury, cardiomyocytes were subjected to lethal ischemia 20 hours after they were 

preconditioned with different concentrations of H2S (Fig. 3-3A). After 5 min of severe 

ischemia and 10 min of reperfusion, the percentage of non-blue cells was 21.4 ± 7.0% 

(N = 15) in VP group (Fig. 3-3B). In SP groups where cells were pretreated with 

10−6~10−3 mol/L NaHS for 30 min, the percentage of non-blue cells was significantly 

higher than that of VP group when the NaHS concentration was 10−5 mol/L and the 

maximum protective response was observed at a concentration of 10−4 mol/L 

(38.5 ± 4.9%, N = 9).  

A similar result was found when using the percentage of rod-shaped cells as an 

indicator of the cell conditions. Only 10.8 ± 1.7% (N = 10) of the cells were rod-shaped 

in VP group. NaHS at 10−5 ~ 10−4 mol/L significantly increased the percentage of rod-

shaped cells. The maximum protection reached at 10−4 mol/L NaHS (16.4 ± 2.0%, N = 11; 

Fig. 3-3C). These dose-dependent responses are consistent with those found in the early 

phase of SP-induced cardioprotection, indicating that SP is able to induce biphasic 

cardioprotection against ischemic injury. 
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Figure 3-3 Late cardioprotection induced by SP in rat cardiomyocytes. (A) Experimental protocol. 
Ischemia was induced 20 hours after preconditioning. (B) Concentration-dependent effect of NaHS on 
cell viability. Values are presented as non-blue cells per total myocytes counted. (C) Concentration-
dependent effect of NaHS on cell morphology. Values are presented as rod-shaped cells per total 
myocytes counted. All data are mean ± SEM; N = 5-15 cultures of 200-500 cells each. *P < 0.05, 
*** P < 0.001 vs VP.  
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3.3.3 SP-induced late cardioprotection lasted at least 28h 

Because of the clinical significance of the late cardioprotection, we investigated the time 

course of the protective effects by determining cell viability and morphology at different 

time points (1, 6, 16, 20, and 28 hours) after 30 min of exposure to H2S (Fig. 3-4A). 

Despite decreased viability with increased culture period, SP groups at 1, 16, 20 and 

28 hours still displayed higher percentage of nonblue cells compared with time-matched 

VP groups (Fig. 3-4B). Similar results were also found when examining cell morphology 

(Fig. 3-4C). These data confirmed that there are two windows of cardioprotection 

induced by H2S preconditioning and also further demonstrated that SP-induced late 

cardioprotection appeared 16 hours after preconditioning and lasts at least until 28 hours.  
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Figure 3-4 Time course of SP-induced cardioprotection. (A) Experimental protocol. After pretreatment, 
cells were cultured in DMEM for 1, 6, 16, 20, and 28 hours respectively before being subjected to severe 
ischemia (IS) for 5 min followed by 10min of reperfusion (RE). Cell viability (B) and cell morphology 
(C) were examined at 10 min into reperfusion. Values are presented as mean ± SEM; N = 5-16 cultures 
of 200~600 cells each. *P < 0.05, **P < 0.01vs corresponding VP groups.  

 



66 

 

3.3.4 SP-induced late cardioprotection counteracts different periods of ischemia and 

reperfusion  

These series of experiments were designed to determine the effectiveness of SP-induced 

late cardioprotection against different periods of ischemia and reperfusion. As shown in 

Fig. 3-5B&C, after 5 min, 10 min or 30 min of ischemia and 10 min of reperfusion, cell 

viability and percentage of rod-shaped cells in SP groups were significantly higher than 

those in corresponding VP groups.  

We also observed the cardioprotective effects of SP at different time points during 

reperfusion. SP increased myocyte viability and percentage of rod-shaped cells at 10 min, 

20 min or 60 min into reperfusion (Fig. 3-6). These data suggest that SP protects 

cardiomyocytes from different periods of ischemic insults and the cardioprotection lasts 

at least 60 min after the onset of reperfusion. 
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Figure 3-5 Late cardioprotection induced by SP against different periods of ischemia. (A) 
Experimental protocol. Cells were subjected to different periods of ischemia (IS) after 20 hours 
culture. Cell viability (B) and cell morphology (C) were examined at 10 min into reperfusion (RE). 
Values are presented as mean ± SEM; N = 5-16 cultures of 200~600 cells each. *P < 0.05, 
** P < 0.01, ***P < 0.001 vs corresponding VP groups.  
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Figure 3-6 Late cardioprotection induced by SP against different periods of reperfusion. (A) 
Experimental protocol. After 20 hours of culture, cardiomyocytes were subjected to 5 min of ischemia 
(IS) followed by different periods of reperfusion (RE). Cell viability (B) and cell morphology (C) 
were examined at 10 min, 20 min or 1 hour into reperfusion (RE). Values are presented as 
mean ± SEM; N = 5-16 cultures of 200~600 cells each. *P < 0.05, **P < 0.01, ***P < 0.001 vs 
corresponding VP groups.  
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3.3.5 SP-induced late cardioprotection was blocked by KATP inhibitors 

The goal of this series of experiments was to probe the mechanism(s) involved in the late 

cardioprotection of SP. The experimental procedures were shown in Fig. 3-7A. Treatment 

with glibenclamide (10−5 mol/L), a non-selective KATP blocker, 15 min before and during 

SP significantly attenuated the cardioprotection observed in SP groups, as manifested by 

the reduced cell viability and increased cellular injury (LDH release) compared with SP 

groups (Fig. 3-7B&C). The contribution of each subtype of KATP channels was also 

assessed by using subtype-specific blockers, 5-HD (10−4 mol/L, a mitochondrial KATP 

blocker), and HMR-1098 (2 × 10−5 mol/L, a sarcolemmal KATP blocker). As shown in Fig. 

3-7B&C, HMR-1098 but not 5-HD reversed SP-induced protective effects on cell 

viability and injury, suggesting that only sarcolemmal KATP plays a part in the 

cardioprotection of SP. In separate experiments, glibenclamide, 5-HD or HMR-1098 

alone (at the same concentration and over the same time course) did not affect cell 

viability. 
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Figure 3-7 Effects of SP on cell viability and cellular injury in the presence and absence of KATP channel 
blockers. (A) Experimental design. Glibenclamide (Gliben), 5-HD and HMR-1098 (HMR) were applied 
15 min before and during SP. (B) Cell viability. Values were presented as non-blue cells per total 
myocytes counted; n=6-7 cultures of ≈200-500 cells each. (C) Cellular injury index. Values were 
presented as supernatant LDH activity/total LDH activities (supernatant + cells lysate). N = 5. 
Mean ± SEM. * P < 0.05, **P < 0.01 vs VP; +P < 0.05, ++P < 0.01, +++P < 0.001, vs SP.  
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To determine whether KATP channels are also involved in the protection of SP on cell 

function, we observed the electrically-induced [Ca2+] i transients during ischemia and 

reperfusion in myocytes co-pretreated with H2S and KATP blockers. Fig. 3-8 shows that 

the protective effect of SP was significantly attenuated by glibenclamide and HMR-1098, 

while 5-HD did not produce any significant effect. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8 Effects of SP on recovery of E[Ca2+] i amplitude in the presence and absence of KATP 
channel blockers. The amplitude of E[Ca2+] i was determined at 10 min into reperfusion. Values are 
mean ± SEM; The numbers of myocytes sampled for measurements were 22 (VP), 20 (SP), 38 
(Gliben + SP), 16 (5-HD + SP) and 12(HMR + SP). ***P < 0.001 vs VP; +++P < 0.001 vs SP.  
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3.3.6 SP-induced late cardioprotection was blocked by a NO synthase inhibitor 

To examine the involvement of NO in the cardioprotection of SP, L-NAME (10-4 mol/L) 

was used as a non-selective inhibitor of all NO synthase. L-NAME significantly 

attenuated the cardioprotection of SP on cell viability (shown in Fig. 3-9A) and cell 

function (shown in Fig.3-9B).  

 

 

 

 

 

 

 

Figure 3-9 Effects of SP on cell viability and E[Ca2+] i transients in the presence and absence of a NO 
synthase inhibitor, L-NAME. (A) Experiment protocol. (B) Cell viability at 10 min into reperfusion. 
Mean ± SEM; N = 6-7 cultures of ≈200-500 cells each. (C) Amplitude of E[Ca2+] i transients at 10 
min into reperfusion. The number of myocytes sampled for calcium measurements were 22 (VP), 39 
(SP) and 46 (L-NAME+SP). ***P < 0.001 vs VP; +P < 0.05, +++P < 0.001 vs SP. 
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3.3.7 SP-induced late cardioprotection was blocked by PKC inhibitors 

To determine the role of PKC in the SP-induced cardioprotection, PKC inhibitors, 

chelerythrine (3 x 10-6 mol/L, chelery) and calphostine C (10-7 mol/L, Cal C) were 

applied 15 min before and during SP preconditioning (Fig. 3-10A). Both drugs, which 

alone had no effects, blunted the cardioprotection of SP on cell viability and cellular 

injury (Fig.3-10B&C).  

 

 

 

 

 

Figure 3-10 Effects of SP on cell viability and cellular injury in the presence and absence of PKC 
inhibitors. (A) Experiment protocol. Chelerythrine (Chelery) and Calphostine C (Cal C) were apllied 
15 min before and during SP. (B) Cell viability. Values were presented as non-blue cells per total 

myocytes counted. n=5-13 cultures of ≈200-500 cells each.  ** P<0.01 vs VP; +P<0.05 vs SP. (B) 
Cellular injury index. Values were presented as supernatant LDH activity/total LDH activities 
(supernatant + cell lysate) normalized to 100% of VP group (control).  n=6. Mean ± SEM; ** P<0.01 vs 
VP, +P<0.05, ++P<0.01 vs SP.  
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3.4 Discussion 

In the present study, we investigated the effect of exogenous H2S on rat cardiomyocytes 

undergoing lethal ischemia. We found that NaHS, a donor of H2S, produced biphasic 

cardioprotection against ischemia-caused damages. The first phase of cardioprotection 

occurred immediately after H2S preconditioning, while the second phase is observable 

between 16 hours and 28 hours after H2S preconditioning. Due to the limited time that 

cardiomyocytes can survive in vitro, it is technically difficult to observe the late phase of 

cardioprotection after 28 hours. However, it is very likely that the late cardioprotection 

could last much longer, as the protective effect was still very strong at 28 hours. These 

data suggest that SP follows a similar time course as IP, which also produces immediate 

(1 to 2 hours) and delayed (12 to 72 hours) protection against ischemia (Murry et al., 

1986; Kuzuya et al., 1993; Marber et al., 1993).  

In both phases, NaHS at 10−5-10−4 mol/L concentration-dependently increased the cell 

viability and the percentage of rod-shaped cells. The maximum protective effect was 

always observed at 10−4 mol/L NaHS. Accordingly, we used the concentration 10−4 

mol/L for all subsequent in vitro experiments. 

Considering the greater clinical importance of the late cardioprotection, we performed 

detailed study on its effectiveness against I/R injury in varied experimental settings. We 

found that H2S preconditioning protected cardiomyocytes against different periods of 

ischemia. As the duration of ischemia increases, the protection appears more significant 

on cell morphology than on cell viability, which implies that SP-induced cardioprotection 

is particularly effective in salvaging more percentage of functional cells rather than living 

cells.  Similar results were also found when cell viability and cell morphology were 
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determined after different periods of reperfusion. The pronounced protection observed in 

SP group after 60 min of reperfusion indicates that the effect of H2S preconditioning is 

prevention instead of delay of cell death. 

In an attempt to probe the signaling mechanism underlying the late cardioprotection, 

we determined the involvement of KATP channels, NO and PKC due to their important 

roles in the late cardioprotection of IP. There are two separate populations of KATP 

channels within the myocardium: the sarcKATP and mitoKATP channels (Gross and Fryer, 

1999). Both sarcKATP channels and mitoKATP channels have been reported to trigger or 

mediate the cardioprotective effects of IP (Gross and Peart, 2003). Initial evidence 

suggested that the sarcKATP channels triggered or mediated the cardioprotective effects of 

IP (Jovanovic et al., 1986; Toyoda et al., 2000); however, more recent findings have 

suggested a major role for mitoKATP channels (Gross and Peart, 2003; Liu et al., 1998; 

Liu et al., 1999). In this study, we found that both non-selective KATP channel blocker 

glibenclamide and selective sarcKATP blocker HMR-1098 reversed the cardioprotection 

of SP, while selective mitoKATP blocker 5-HD failed to affect the protection of SP. These 

data clearly indicate that sarcKATP is the subtype of KATP channel that mediates the SP-

induced late cardioprotection. Opening of sarcKATP channels is associated with potassium 

efflux, depolarization of cell membrane and shortening of APD (Noma, 1983; Cole et al., 

1981). These effects reduce Ca2+ influx via L-type Ca2+ channels and prevent the reversal 

of the Na+-Ca2+ exchange system. The resultant decrease in Ca2+ influx would be 

expected to lead to a reduction of the mechanical contraction, blunting of intracellular 

Ca2+ overload, and energy sparing during ischemia and early reperfusion. 
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The present study also demonstrated an essential role of PKC in SP-induced late 

cardioprotection with two different PKC inhibitors. The involvement of PKC is probably 

secondary to the opening of KATP channels, since H2S has been shown to directly open 

KATP channels in smooth muscle cells (Zhao et al., 2001).  However, activation of PKC 

and KATP
 channel could also be codependent (Baxter et al., 1995; Gross and Peart, 2003), 

given that protection provided by direct KATP channel openers could be abolished by 

PKC antagonists and vice versa (Gaudette et al., 2000). Additional experiments are 

needed to determine whether opening of KATP channels is an event upstream of PKC 

activation in SP-induced late cardioprotection. In addition, the two PKC inhibitors used, 

chelerythrine and calphostin C, are not isoform-selective, which warrants further studies 

to determine the specific isoforms involved.  

The role of NO in the SP-induced cardioprotection is another focus of interest in this 

study. Over the past decade, many studies have revealed a critical role of NO in IP-

induced cardioprotection (Bolli, 2001). Importantly, NO alone is also sufficient to induce 

late cardioprotection against myocardial ischemia (Takano et al., 1998). In the present 

study, we found that inhibition of NO synthesis with L-NAME significantly attenuated 

the cardioprotection of H2S on both cell viability and cell function. This is another line of 

evidence supporting the concept that crosstalk exits between endogenous 

gasotransimitters (Szabó, 2007).  

In conclusion, the present study has demonstrated, for the first time, that 

pharmacological preconditioning with the H2S
 donor NaHS is able to confer 

cardioprotection against ischemia probably via activation of sarcKATP channel, PKC and 

release of NO. 
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Chapter 4 H2S preconditioning-induced PKC activation regulates 

intracellular calcium handling in rat cardiomyocytes 

4.1 Introduction 

The study in Chapter 3 has revealed that PKC is involved in the SP-induced 

cardioprotection.  The PKC family consists of at least 10 isoforms, of which PKC-α, ε, 
and δ are the prominent isoforms expressed in the heart (Mackay and Mochly-Rosen, 

2001). Upon stimuli, PKC isoforms translocate from the cytosol to subcellular membrane 

regions, a process associated with their activation (Mackay and Mochly-Rosen, 2001). 

However, it is completely unknown which isoforms could be activated by H2S 

preconditioning and how they mediate or execute the cardioprotection. 

PKC activation has been reported to play a role in regulating intracellular calcium 

handling (Ladilov et al., 1998; Stamm et al., 2001; Stamm and del Nido, 2004). Under 

the physiological condition, intracellular calcium concentration is sophisticatedly 

regulated by several proteins present in the sarcolemmal and sarcoplasmic reticulum (SR) 

membranes. Upon the arrival of action potential, Ca2+ influxes through the L-type Ca2+ 

channel and triggers the opening of the ryanodine receptor (RyR), resulting in further 

release of Ca2+ from SR, which accomplishes the sharp [Ca2+] i elevation required for 

myofibril contraction (Guatimosim et al., 2002). In the rat cardiomyocytes, >90% of the 

Ca2+ after contraction is immediately uptaken by SR via sarco(endo)plasmic reticulum 

Ca2+-ATPase (SERCA), while the remaining Ca2+ is pumped out of the cell via Na+/Ca2+ 

exchanger (NCX) (Bers, 2000).  
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However, the well-controlled intracellular Ca2+ homeostasis could be easily disrupted 

by ischemia and reperfusion insults. During ischemia, excessive Ca2+ accumulates in the 

cytosol (Piper et al., 1993) and leads to a series of severe damages upon reperfusion. For 

example, once re-energized by reperfusion, cardiac myofilaments contract in an extreme 

and sustained manner (hypercontracture) due to overstimulation of calcium on the 

contractile apparatus (Siegmund, 1993). In single cardiomyocytes, such hypercontracture 

causes irreversible shortening of cell length. In tissues, it causes a disruptive change in 

myocardium termed contraction band necrosis (Ganote, 1983).  Under this circumstance, 

a faster clearing of excessive Ca2+ from cytosol is therapeutically important as it would 

potentially attenuate Ca2+ overloading during ischemia (Abdallah et al., 2005) and 

prevent subsequent damages. Since PKC is implicated in the intracellular Ca2+ handling, 

it is worthwhile investigating whether H2S could alter intracellular Ca2+ handling via 

activation of PKC. 

 Taken together, there is no information so far available regarding the isoforms of 

PKC involved in H2S preconditioning and how the cardioprotective signals are conveyed 

forwards.  Thus in the current chapter, a close inspection on PKC was performed with an 

emphasis on its upstream and downstream connections in the signal transduction pathway 

of H2S preconditioning.  

4.2 Materials and Methods 

4.2.1Experimental protocol 

Myocytes were subjected to H2S preconditioning (SP) by incubation with 10-4 mol/L 

NaHS for 30 min.  20 hours later, samples were harvested for western blotting 

experiment or for intracellular Ca2+ transient recording. To study the sequence of 
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signaling events between PKC activation and KATP opening, cells were treated with 

glibenclamide (10-5 mol/L, a blocker of KATP channel) 15 min before and during SP. In 

separate experiments, preconditioned cells were subjected to severe ischemia followed by 

10min’s reperfusion with normal medium. Resting Ca2+ was traced real-time during 

ischemia for examination on cytosolic Ca2+ accumulation. Cell lengths before ischemia 

and after the onset of reperfusion were compared for evaluation of hypercontracture.  

4.2.2 Cell fractionation and western blotting 

A cell fractionation technique was adopted from the literature (Mackay and Mochly-

Rosen, 2001; Weber et al., 2005). After 20h’s incubation, cardiomyocytes were lysed 

with 150 µl ice-cold lysis buffer containing 125mM NaCl, 25mM Tris pH7.5, 5mM 

EDTA, 1% NP-40 and protease inhibitors and shaken on ice for 1h. The cell lysate was 

centrifuged at 1000×g at 4oC for 10 min for rough partition between cytosolic and 

membrane fractions. The supernatant was recentrifuged at 16000×g at 4oC for 15min to 

get rid of contaminating pellet materials and collected as cytosolic fraction. The initial 

pellets were resuspended in 100 µl cell lysis buffer containing 1% triton X-100 and 

shaken on ice for another 60min and were then centrifuged at 16000×g at 4oc for 15min. 

The second supernatant was collected as membrane fraction. Epitopes were exposed by 

boiling the protein samples at 90oc water for 5 min. Each fraction was analyzed for 

protein content by Bradford assay. Equal amounts of protein were loaded and 

electrophoresed with 10% SDS-polyacrylamide gel and transferred to a polyvinylidene 

difluoride membrane (Amersham Biosciences, U.K.). The membrane was probed with 

antibody against PKCε (Santa Cruz Biotechnology, Inc., California, U.S.A.), PKCα and 
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PKCδ (Cell Signaling Technology, Inc., Danvers, U.S.A). Immunoreactivity was 

detected using an ECL advance western blot detection kit (Amersham Biosciences, U.K.). 

4.2.3 Measurement of [Ca2+] i 

Electrically induced [Ca2+] i transients (E[Ca2+] i) were generated by stimulating myocytes 

with a stimulator at 0.2 Hz (Grass S88). Caffeine-induced [Ca2+] i transients (C[Ca2+] i) 

were generated by adding 10-2 mol/L caffeine directly to the incubation buffer. Resting 

Ca2+ level was recorded during ischemia challenge without any electrical or caffeine 

stimulations.  

4.2.4 Measurement of cell length 

Cardiomyocytes were placed on the stage of an inverted microscope (Nikon TE2000-S). 

The cell image was taken with a digital camera (Nikon DS-5M-L1) connected to the 

microscope with a 20X objective and analyzed with NIS-documentation software (Nikon).  

4.2.5 Statistical analysis 

Values presented are mean ± SEM. Statistic comparisons were performed by one-way 

ANOVA and bonferroni for post-hoc analysis. The significance level was set at P<0.05. 

4.3 Results 

4.3.1 SP promoted translocation of PKC α,ε and δ to membrane fraction 

To determine the activated PKC isoforms in the delayed phase of cardioprotection 

induced by SP and IP, subcellular distributions of three main PKC isoforms present in the 

heart, α, ε and δ, were examined with western blotting experiments 20h after SP and IP. 

As shown in Fig. 4-1, SP induced all three isoforms of PKC translocation from cytosol to 
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membrane. The membrane/cytosol ratios of PKC-α,ε and δ abundance increased 

approximately two folds in SP group compared with VP group (Fig. 4-1D-F). 

Interestingly, IP only induced translocation of PKCε and δ, but had no effect on PKCα 

translocation. These data suggest that the SP and IP may employ different subsets of PKC 

isoforms to mediate their cardioprotection.  

 

 

 

 

Figure 4-1. Effects of IP and SP on subcellular distribution of PKCα (A&D), PKCε (B&E), and 
PKCδ (C&F). (A-C) Representatives of five separate experiments for each isoform. (D-F) Gourp 
results of membrane/cytosol ratio of PKC isoform abundance. They are calculated by relative 
densitometry and normalized to 100% of VP group. The data are presented as mean ± SEM, n=5, 
*P<0.05 **P<0.01 vs VP. 
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4.3.2 KATP channel blocker prevented translocation of PKCε  

Glibenclamide (10-5 mol/L), a KATP channel blocker, was used to examine whether SP-

induced translocation of PKC isoforms was secondary to the opening of KATP channels. 

As shown in Fig. 4-2, glibenclamide blocked SP-induced translocation of PKCε but did 

not affect translocation of PKCα and PKCδ, suggesting that only PKCε among the three 

isoforms is downstream to KATP channels in the signaling pathway of SP.  

 

 

 

Figure 4-2. Effects of KATP blockers on SP-induced translocation of PKC isoforms. Glibenclamide was 
applied 10 min before and during SP treatment. (A-C) Representatives of five separate experiments for 
each isoform. (D-F) Correspondent membrane/cytosol ratios calculated by relative densitometry and 
normalized to 100% of VP group. The data are presented as mean ± SEM, n=5~7, *P<0.05 **P<0.01 
vs VP, ++P<0.01 vs SP. 
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4.3.3 SP accelerated SR-Ca2+ uptake rate in a PKC-dependent manner  

The decline rate of [Ca2+] i is mainly determined by Ca2+ uptake to SR via SERCA, which 

is responsible for the removal of ~90% Ca2+ from the cytosol (Bers, 2000). Thus t50 (half-

decay time) and t90 (90% decay time) of E[Ca2+] i were measured as indicators of SR 

uptake rate. As shown in Figure 4-3, both t50 and t90 were significantly shortened in SP 

group, compared with those observed in VP. Co-treatment with 3 x 10-6 mol/L 

chelerythrine during SP reversed this effect, suggesting that SP accelerated the rate of 

SR-Ca2+ uptake through a PKC-denpendent pathway.   

 

 

 

Figure 4-3. Effects of SP on SR-Ca2+ uptake rate in single ventricular myocytes in the presence and 
absence of PKC inhibitor. (A) Typical transients of E[Ca2+] i in VP, SP and SP+Chelerythrine 
(SP+Che). Half-decay time t50 (B) and 90% decay time t90 (C) of E[Ca2+] i indicate the rate of Ca2+ 
uptake to SR via SERCA. The data are presented as mean ± SEM, n=14(VP), 11(SP), 7(Che). *P<0.05 
vs VP, **P<0.01 vs VP, +P<0.05 vs SP. ++P<0.01 vs SP. 
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4.3.4 SP accelerated Ca2+ extrusion rate in a PKC-dependent manner  

Because caffeine keeps RyR open, SR is unable to sequester Ca2+ during its application. 

The decline of [Ca2+] i therefore depends on Ca2+ extrusion through NCX (Sham et al., 

1995).  The rate of extrusion can be reflected by decay of C[Ca2+] i
  (t50 and t90). As shown 

in Figure 4-4, SP significantly shortened both t50 and t90 of the decay of C[Ca2+] i. These 

effects were reversed by inhibition of PKC with chelerythrine (3 x 10-6 mol/L). We also 

examined the SR-Ca2+ load by measuring the amplitude of C[Ca2+] i
  since caffeine 

depletes the intracellular Ca2+ store at a burst. The amplitude did not differ between 

groups, which excluded a less SR-Ca2+ load as a cause of the faster clearing of cytosolic 

Ca2+. 
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4.3.5 SP attenuated cytosolic Ca2+ accumulation during ischemia in a PKC-

dependent manner 

Resting Ca2+ elevation was traced during ischemia to investigate whether the Ca2+ 

handling altered by SP affected the Ca2+ accumulation in the cytoplasm during ischemia 

challenge. As shown in Fig. 4-5, the resting Ca2+ level in VP increased dramatically 

within 15 min of ischemia, indicating a severe Ca2+ accumulation in the cytosol. 

Figure 4-4. Effects of SP on Ca2+ extrusion rate in single ventricular myocytes in the presence and 
absence of PKC inhibitor. (A) Typical transients of C[Ca2+] i  in VP, SP and SP+Chelerythrine (SP+Che) 
Half-decay time t50 (B) and 90% decay time t90 (C) of C[Ca2+] i  indicate the rate of Ca2+ extrusion via 

NCX. Amplitude (D) of C[Ca2+] i  reflects the Ca2+ load in SR. The data are presented as mean ± SEM, 
n=13(VP), 9(IP), 13(SP), 8(Che), 12(Gliben). *P<0.05 vs VP, **P<0.01 vs VP, **P<0.001 vs VP,  
++P<0.01 vs SP. 
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However, the increase of resting Ca2+ in SP was limited to a much lower extent.  

Pretreatment with chelerythrine during SP diminished this effect.  

 

 

 

 

 

 

4.3.6 SP attenuated myocyte hypercontracture at the onset of reperfusion in a PKC-

dependent manner  

Figure 4-5. Effects of SP on cytosolic Ca2+ accumulation during ischemia in the presence and absence 
of PKC inhibitor. (A) Typical tracings of resting Ca2+ level during 15 min of ischemia challenge in 
single cardiomyocytes in VP, SP and SP+Chelerythrine (SP+Che). (B) Group results. Data are 
presented as the area under the Ca2+ increase curve within 10 min of ischemia and normalized to 100% 
of control. Values are mean ± SEM, n=6, **P<0.01 vs VP, ++P<0.01 vs SP. 
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Hypercontracture refers to the sustained maximum contractile activation of myofibrils 

resulting from the combination of excessive cytosolic Ca2+ accumulation during ischemia 

and energy resupply after reperfusion (Siegmund et al., 1993). We determined cell length 

shortening few minutes after the onset of reperfusion in an attempt to investigate whether 

SP may also alleviate hypercontracture. As shown in Fig. 4-6, in VP group myocyte 

length was shortened to about half of their initial length after reperfusion. SP significantly 

attenuated this detrimental shortening and this effect was abolished by inhibition of PKC 

with chelerythrine.  

 

 

 

4.4 Discussion 

In the current study we found that SP-induced PKC isoform activation accelerates the 

rectification of elevated [Ca2+] i and thereby increases the susceptibility of cardiomyocytes 

Figure 4-6. Effects of SP on myocyte hypercontracture at the onset of reperfusion. Mean data 
showing the cell lengths before ischemia and after onset of reperfusion in VP, SP and 
SP+Chelerythrine (SP+Che). Mean ± SEM, n=30~50, **P<0.01 vs VP, ++P<0.01 vs SP. 
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to ischemia-induced Ca2+ overload and consequent damages induced by reperfusion. 

These findings disclose a novel mechanism for SP-induced cardioprotection and also 

provide considerable implication for other PKC-related anti-ischemia interventions. 

4.4.1 PKC isoform translocation  

Although PKC activation seems to be coupled with the genesis of late phase of 

cardioprotection induced by SP, the specific PKC isoforms involved is still unknown. 

PKC-α, ε, δ are the three main isoforms expressed in adult cardiomyocytes and also the 

most important ones involved in cardioprotection of ischemic preconditioning (Rybin and 

Steinberg, 1994; Kawamura et al., 1998). For this reason, we examined the effect of SP 

on these three isoforms before ischemia insults which itself can stimulate PKC 

translocation. We found that H2S preconditioning motivated translocation of the three 

isoforms PKC-α, ε and δ to membrane fraction at 20h after preconditioning. Such 

translocation prior to ischemia attack may act as an essential step to switch the cells into a 

state tolerant to ischemia insults, and failure of such translocation results in the loss of 

cardioprotection as observed in the presence of a PKC inhibitor.  

Individual PKC isozymes are believed to mediate characteristic cell functions, as 

upon stimuli they are directed to distinct subcellular membrane regions by isozyme-

specific receptors for activated C kinase (RACK) (Mackay and Mochly-Rosen, 2001). By 

binding to their specific RACKs the activated isozymes are anchored close to their 

particular substrates. In the present study, we employed IP as a reference model due to its 

recognized stimulatory effect on PKC. Intriguingly, we found that IP only promoted 

PKCε and PKCδ translocation but not that of PKCα. The discrepancy between SP and IP 

suggests that they may employ different subsets of PKC isoforms to convey their 
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cardioprotective signals to different subcellular regions, affording probably similar but 

not identical cardioprotection.  

4.4.2 PKC and KATP  

Since H2S has been shown to have a direct effect on KATP channels (Zhao et al., 2001; 

Tang et al., 2005), it raises the question whether SP-induced PKC activation is secondary 

to the opening of KATP channels. Unexpectedly, we observed that blockade of KATP 

channel only diminished the SP-induced translocation of PKCε but failed to affect the 

translocation of PKCα and δ. Thus, KATP channel opening may only be necessary for 

PKCε activation in the SP signaling pathway.  

It is until recently that individual PKC isoforms were found located differently in 

relation to KATP channels in the cardioprotective signaling pathway. Hassouna 

demonstrated that PKCε is located upstream whereas PKCα is downstream to mitoKATP 

channel in IP signaling pathway (Hassouna et al., 2004). This implies a considerable 

diversity of the signaling mechanisms whereby PKC isoforms are activated. Since PKC 

can also be activated by other signaling molecules like NO or Ca2+ (Miyawaki and Ashraf, 

1997; Ping et al., 1999), more studies are warranted to test whether SP induces activation 

of PKCα and PKCδ through provoking the release of these signaling molecules.  

4.4.3 PKC and intracellular Ca2+ handling 

Of great importance, we elucidated the mechanism how the SP-activated PKC mediates 

the cardioprotection. By monitoring the resting Ca2+ level in single cardiomyocytes, we 

observed that SP lowered elevation of [Ca2+] i  during ischemia in a PKC-dependant 

manner. Such a timely rectification on elevated [Ca2+] i during ischemia challenge could 
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be therapeutically important, as uncontrolled elevation in [Ca2+] i could induce irreversible 

injuries like mitochondria dysfunction (Minezaki et al., 1994), membrane degradation 

and contractile derangement (Gross et al., 1999). If the ischemia is followed by 

reperfusion, the myocytes will exhibit hypercontracture at the onset of reperfusion due to 

massive stimulation on the contractile machinery by accumulated Ca2+ (Siegmund et al., 

1993). In perfused myocardium, this hypercontracture is manifested by contraction band 

necrosis (Ganote, 1983). Even if the necrotic myocardium can be replaced by scar tissues 

in a subsequent remodeling process, the akinetic fibrotic tissue will permanently impair 

the pumping function of the heart and when substantial enough will lead to heart failure 

(Richardson et al., 1996).  

To further corroborate the effect of H2S on resting Ca2+ during ischemia, we 

examined the myocyte hypercontracture at the onset of reperfusion. Indeed, SP reduced 

the development of myocyte hypercontracture through a PKC-dependent pathway. These 

beneficial effects triggered by SP and mediated by PKC could in turn at least partly 

account for the cardioprotection observed on cell viability, cell morphology, and cell 

function. It is also predictable that this limitation on development of Ca2+ overloading 

and hypercontracture in single cells would achieve further significant benefits by 

preserving contractile function in the intact heart.  

Previous studies have demonstrated an effective approach to attenuate myocyte 

hypercontracture by increasing SERCA activity (Abdallah et al., 2005). Since SR uptake 

through SERCA presents the dominant route for Ca2+ removal in cardiomyocytes, it is 

plausible that this reduced hypercontracture is due to a faster Ca2+ clearing from cytosol 

before reperfusion. Enlightened by this finding, we examined the SR- Ca2+ uptake rate as 
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well as the minor mechanism for Ca2+ removal, i.e. extrusion via NCX. We found that SP 

accelerated the clearing rate through both of these routes. Again, all these beneficial 

effects induced by SP were reversed by inhibition of PKC, implying that PKC may 

phosphorylate these calcium handling proteins and improve their function.  

In conclusion, the present study significantly advances our understanding on the SP-

induced cardioprotection by delineating the essential role of PKC in the context of 

signaling pathway. The results demonstrate that SP activates PKCα, ε and δ in 

cardiomyocytes, among which only activation of PKCε is secondary to the KATP channel 

opening. Such PKC activation accelerates cytosolic Ca2+ clearing and prevents 

development of Ca2+ overloading and myocyte hypercontracture during ischemia and 

reperfusion.  
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Chapter 5 H2S preconditioning induces late cardioprotection in a rat 

model of myocardial infarction 

5.1 Introduction 

Myocardial infarction (MI) is the common presentation of ischemic heart disease. To test 

the cardioprotective effect of H2S in intact animals, we established a rat model of MI by 

occluding the left anterior descending coronary artery (LAD). To pave way for clinical 

studies, we investigated and fine-tuned the effect of H2S preconditioning and further 

made comparison between different administration regimes to investigate whether post-

MI treatment with H2S could produce comparable infarct-limiting effect and whether a 

combination of both could provide additional protection.  

5.2 Materials and Methods 

5.2.1 Animals 

The study protocol was approved by the Institutional Animal Care and Use Committees 

(IACUC) of National University of Singapore. Left ventricular (LV) MI was created in 7-

week-old male Sprague-Dawley rats. The rat was anesthetized by an intraperitoneal 

injection of ketamine (70mg/kg body weight) and xylazine (4.6mg/kg body weight). A 3-

cm catheter was inserted into the animal’s trachea and the animal was ventilated with a 

Havard respirator at 85 strokes per minute and tidal volume of 2.15 cc.  After 

thoracotomy at the fourth intercostal space, the heart was exteriorized and the left anterior 

descending coronary artery (LAD) was permanently ligated using 6-0 suture. The heart 

was then placed back to normal position and the chest was closed with 3-0 suture.  
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5.2.2 Experimental design  

The protocols were shown in Fig. 5-1. Rats in H2S preconditioning group received a 

single bolus of NaHS (a H2S donor) one day before surgery. NaHS was given 

intraperitoneally at doses of 0.1, 1, 3, 10, 30 µmol/kg body weight. Rats in H2S post-MI 

treatment group received an intraperitoneal bolus of NaHS immediately after surgery and 

once a day for two more days. NaHS was given at 0.1, 1, 10 µmol/kg body weight. Rats 

in the combo group were treated with a combination of preconditioning and post-MI 

treatment, that is, a bolus of NaHS one day before surgery plus one bolus a day for 3 days 

after surgery. Each group was compared with correspondent vehicle-treated MI, in which 

rats received surgery and saline injection in parallel with NaHS administration. For the 

time course study (Fig. 5-3A), rats received surgeries 1 day, 3 days or 5 days after NaHS 

administration (1µmol/kg).  
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5.2.3 Assessment of infarct size 

Infarct size and ischemic risk area were determined using Evans blue and 

triphenyltetrazolium chloride (TTC) staining. Three days after MI, animals were 

euthanized, the heart excised, and stained with 0.12% evans blue to define the area at risk 

(AAR; the nonperfused and hence unstained myocardium). The heart was then sliced into 

Figure 5-1. Experimental protocols. (A) H2S preconditioning group: rats received a single bolus of 
NaHS (a H2S donor) one day before surgery; (B) H2S post-treatment group: rats received an 
intraperitoneal bolus of NaHS immediately after surgery and once daily for two more days; (C) 
Combo treatment group: rats were treated with a combination of H2S preconditioning and post-MI 
treatment, namely, a bolus of NaHS given once daily from one day before till 3 days after surgery.  
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sections and incubated in 1% TTC in PBS for 15 minutes to define the area of infarction 

(INF; nonviable thus unstained myocardium). Infarct size, ventricle internal diameter and 

anterior wall thickness were assessed using computerized planimetry. 

5.2.4 Statistics 

All data are expressed as a mean ± SEM. Statistics were performed with one-way 

ANOVA followed by a Bonferroni post-hoc test. A P value less than 0.05 denotes a 

statistically significant difference.  

5.3 Results 

5.3.1 AAR/LV was consistent throughout the study 

Table 1 lists the number of animals in each group and the correspondent ratio of area at 

risk to total left ventricle area (AAR/LV).  No significant difference in AAR/LV was 

observed across groups.  

 

Table 1. List of experimental groups with their respective animal numbers and area at 

risk, expressed as the percentage of the left ventricle (AAR/LV). 

Study  Group N AAR/LV (%) 

MI-vehicle 7 52.6 ± 2.8 Preconditioning 

 NaHS Pre 0.1 7 50.6 ± 3.0 

 NaHS Pre 1 8 50.5 ± 4.5 

 NaHS Pre 3 7 52.9 ± 4.0 

 NaHS Pre 10 7 52.3 ± 1.7 
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 NaHS Pre 30 6 48.0 ± 2.9 

MI-vehicle 9 51.8 ± 3.3 Post-treatment 

 NaHS Post 0.1 7 49.6 ± 2.5 

 NaHS Post 1 7 50.2 ± 2.9 

 NaHS Post 10 8 50.8 ± 3.8 

MI-vehicle 8 50.4 ± 2.5 Combo treatment 

  NaHS Combo 0.1 7 51.2 ± 3.2 

 NaHS Combo 1 7 48.8 ± 3.6 

 NaHS Combo 10 10 52.4 ± 3.9 

MI-vehicle (1 day) 6 50.9 ± 2.5 Time course study 

 NaHS pre 1 (1 day) 6 49.4 ± 4.2 

 MI-vehicle (3 day) 7 53.4 ± 3.0 

 NaHS pre 1 (3 day) 6 50.7 ± 3.8 

 MI-vehicle (5 day) 6 51.3 ± 3.9 

 NaHS pre 1 (5 day) 5 49.7 ±  2.7 
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5.3.2 H2S preconditioning reduced infarct size, LV dilatation and wall thinning in 

the heart undergoing MI  

A single bolus of NaHS was administered one day before MI (Fig. 5-1A). As shown in 

Fig. 5-2B, NaHS at 0.1, 1, 3, and 10µmol/kg significantly decreased infarct size per AAR 

as compared with MI-vehicle group. The optimal effect was found in rats receiving 1 

µmol/kg NaHS, which displayed a 78% reduction in infarct size. Representative mid-

ventricular cross sections of MI-vehicle and H2S preconditioning at 1 µmol/kg were 

shown in Fig. 5-2A. H2S preconditioning also remarkably reduced LV dilatation and wall 

thinning, as manifested by the decreased LV internal diameter (Fig. 5-2C) and increased 

anterior wall thickness (Fig. 5-2D) compared with MI-vehicle. Similar dose-response 

curves were observed, with significant effects found within a dose range of 0.1~3 

µmol/kg NaHS.  
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Figure 5-2. Effect of H2S preconditioning on infarct size and LV geometry. (A) Representative 
mid-myocardial sections of MI-vehicle and H2S preconditioning. (B-D) Dose-dependent effect of 
NaHS (0.1~30 µmol/kg) on infarct size (B), left ventricle internal diameter (C), and left ventricle 
anterior wall thickness (D). The data are presented as mean ± SEM. *, P<0.05, **, P<0.01, ***, 
P<0.001vs. MI-vehicle. N per group is shown in Table 1.  
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5.3.3 The protection of H2S preconditioning lasted at least 3 days after NaHS 

administration  

Rats preconditioned with NaHS (1 µmol/kg) were subjected to coronary occlusion on day 

1, day 3 or day 5 after NaHS administration (Fig. 5-3A). Strong infarct-limiting effects 

were observed on day 1 and day 3 (Fig. 5-3B), indicating that the protection lasted at 

least 3 days after the preconditioning stimulus. 

 

 

 

Figure 5-3. Time course of the cardioprotection induced by H2S preconditioning. (A) Experimental 
protocol. (B) Infarct size in rats subjected to MI on day 1, day 3 and  day 5. The data are presented as 
mean ± SEM. **, P<0.01, ***, P<0.001 vs. correspondent MI-vehicle. N per group is shown in Table 1. 
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5.3.4 The protection of H2S preconditioning could not be replaced with H2S post-MI 

treatment  

Based on the effective dose range of H2S preconditioning, we examined the effect of H2S 

post-treatment at 0.1, 1, and 10 µmol/kg NaHS given once daily for 3 days after the MI 

surgery (Fig. 5-1B). Rats receiving 1 and 10 µmol/kg NaHS also displayed a significant 

decrease in infarct size compared with correspondent MI-vehicle group (Fig. 5-4A). 

However, when compared with H2S preconditioning group at the same dose, the 

infarct/AAR was significantly lower in preconditioning groups than those in post-

treatment groups.  At the optimal dose of 1 µmol/kg NaHS for both groups, H2S 

preconditioning limited the infarct size to 13.1 ± 4.3% per AAR, representing a 78% 

reduction, while H2S post-treatment reduced the infarct size only by 38% to 37.5 ± 3.1% 

per AAR.  In addition, none of the doses in post-treatment group produced significant 

effect on LV dilatation and wall thinning, as indicated by LV internal diameter (Fig. 5-4B) 

and wall thickness (Fig. 5-4C). In contrast, H2S preconditioning significantly decreased 

LV internal diameter and increased wall thickness when compared with either MI-vehicle 

group or H2S post-treatment at 1 µmol/kg.   

We also tested whether a combination of H2S preconditioning and post-MI treatment 

could produce a synergic cardioprotection. Rats in the combo group received NaHS (0.1, 

1, or 10 µmol/kg) injection once daily from 1 day before till 3 days after MI surgery (Fig. 

5-1C).  As shown in Fig. 5-4A, a combo treatment of NaHS at all doses significantly 

decreased infarct size compared with correspondent MI-vehicle group. When comparing 

at the same dose collaterally, the infarct/AAR in combo group at 0.1 and 1 µmol/kg were 

significantly lower than that in post-treatment group but comparable to that in H2S 
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preconditioning group. Likewise, a similar trend was observed when assessing the LV 

parameters (Fig. 5-4 B&C). In addition, no significant difference in infarct size and LV 

geometry was observed across the three MI-vehicle groups injected with the three 

different administration regimes. These results indicate that the infarct-limiting effect of 

H2S preconditioning superseded that produced by post-treatment when both were 

administered. Continuous treatment after MI did not reinforce the effect of H2S 

preconditioning and thus seems redundant.  
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Figure 5-4. Comparison on infarct size (A) and LV internal diameter (B) and LV anterior wall 
thickness (C) among H2S preconditioning, post-MI treatment and a combination of both (combo). 
NaHS was given at 0.1, 1, 10 µmol/kg for each group. The experimental protocol is shown in Figure 
1. The data are presented as mean ± SEM. *, P<0.05, **, P<0.01, ***, P<0.001 vs. correspondent 
MI-vehicle. N per group is shown in Table 1. 
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5.4 Discussion  

The present study demonstrated in an in vivo rat model that brief exposure to H2S 

restrains the extent of myocardial infarction that occurs in the next 72 hours through a 

PKC-dependent mechanism. Post-MI treatment with NaHS at the same doses for 3 days 

did not produce as pronounced infarct-limiting effect as observed in the preconditioning 

group. A combination of both did not produce additional benefit more than 

preconditioning alone. These results suggest that the effect of preconditioning is not 

replaceable with post-MI treatment even with multiple-administrations. The access to 

preconditioning, by and large, determines the outcome of the patients. Continuous 

treatment after MI is not necessary when the access to preconditioning has been secured. 

As always, studies in intact animals are of great importance to bridge the novel 

discoveries in basic research to clinical use. Since H2S has been proposed to be both 

cytoprotective (Kimura and Kimura, 2004; Whiteman et al., 2004; Whiteman et al, 2005) 

and cytotoxic (Deplancke and Gaskins, 2003; Yang et al., 2006), depending on the cell 

type and concentration used, fine-tuning the NaHS dose is particularly crucial in in vivo 

experiments. Inappropriate selection of dose range may lead to misappraisal of its 

therapeutic value or even to contradictory results. The prevailing dose of sulfide donor 

used in the most of recent cardiovascular studies is above 10 µmol/kg body weight per 

day (Cai et al., 2007; Meng et al., 2007; Sivarajah et al., 2007; Zhu et al., 2007). However, 

we demonstrated in a preconditioning model that a single bolus of NaHS at 0.1~1µmol 

/kg was sufficient to afford marked protection against MI. Increasing the dose from 

1µmol /kg only decreased the protection.  
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We also performed a time course study to determine the duration of the protection. 

Sivarajah and colleagues (Sivarajah et al., 2007) showed that NaHS pretreatment, 15 min 

before MI, produced immediate protection, while we found that H2S preconditioning 

produced late protection which lasted at least 3 days.  The vastly different duration of 

protection supports the concept that the late phase of preconditioning may have greater 

clinical usefulness (Bolli, 2000). It also merits further study to investigate whether 

continuous administration of NaHS at 48-72h intervals will extend the protection 

duration and whether repeated administration will result in the maintenance of a 

defensive phenotype.  

Although preconditioning is inferior to treatment in terms of practical convenience, 

the ultimate goal should be identification and implement of the most effective approach 

to intervene with MI. Elrod and colleagues recently reported that H2S donor administered 

at the time of reperfusion significantly decreased infarct size (Elrod et al., 2007). 

However, no comparison has so far been conducted between the effectiveness of H2S 

preconditioning and post-MI treatment. Our current study evidenced that H2S 

preconditioning produced far stronger infarct-limiting effects than H2S post-treatment in 

this model, indicating that the effect of preconditioning with a single bolus of NaHS 

could not be replaced with multiple post-MI administration of the sulfide donor. This 

result bears great clinical implication for those potential patients at high risk of 

myocardial infarction. Brief exposure to low dose of H2S may make them survive a MI 

which would otherwise be a lethal attack. However, much less benefit could be provided 

by H2S treatment after the attack has occurred. To substantiate above finding, we treated 

the rats with a combination of both preconditioning and post-MI treatment. The 
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combined treatment produced an infarct-sparing effect comparable to that produced by 

H2S preconditioning alone, which further underscores the importance of access to NaHS 

before the attack.  

In the current study, we also examined the effect of H2S on LV chamber dilatation 

and wall thinning by assessing the LV internal diameter and anterior wall thickness. 

Changes in these parameters almost followed the same trend as infarct size. It is worthy 

of note that H2S post-treatment did not reduce LV dilatation and wall thinning to a 

statistically significant extent in spite of deceasing infarct size, while preconditioning was 

able to effectively limit infarction,  chamber dilatation and ventricle wall thinning at the 

same time. These effects of H2S preconditioning on ventricular geometry hint a better 

preserved LV pump function and a reduced chance of post-MI ventricular rupture.  

With accumulating data supporting its protective effect, H2S possesses the potential to 

be developed into an inhaled gas or a parenteral injectable, which could actualize the 

power of ischemic preconditioning without feasibility problem. Importantly, the dose of 

H2S we identified most effective in the preconditioning model is over 250 folds lower 

than its LD50 value (Warenycia et al., 1989). Therefore, for the high-risk population, brief 

exposure to H2S every 3 days represents a cost-effective prevention measure.    

In conclusion, the current study provides the first evidence that 1) preconditioning 

with low concentration of H2S produces delayed cardioprotection against myocardial 

infarction and 2) H2S preconditioning was far more effective than post-treatment in 

limiting infarct size, LV dilatation and wall thinning.  
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Chapter 6 General discussion 

The whole investigation profiled the role of hydrogen sulfide in the cardioprotection 

against ischemia and reperfusion insult, focusing on its potential as a preconditioning 

agent. The evidence from both in vitro and in vivo studies consistently pointing towards 

that H2S preconditioning produces potent cardioprotective effects, which translated into 

decreased cell death, prevention of intracellular calcium overload, preserved contractile 

function and restraint of infarct size. The dose-response curve, both in isolated 

cardiomyocytes and in intact animal, is bell-shaped: raising the dose of sulfide above the 

optimal dose results in diminished therapeutic efficacy. 

Using cardiomyocytes, we also identified several essential signaling components and 

intracellular events underlying the protection afforded by H2S preconditioning. Fig. 6-1 

summarizes the current understanding of H2S preconditioning by proposing a signaling 

pathway: with free passage through the plasma membrane, H2S directly opens 

sarcolemmal KATP channel which activates PKCε. Or through some unknown 

mechanisms, H2S could also directly or indirectly stimulate PKCα and PKCδ. Activated 

PKC isoforms then translocate from cytosol to membrane fraction of the cell, where 

calcium handling proteins such as SERCA and NCX are located. PKC may enhance the 

function of these proteins whereby the cytosolic calcium clearing is accelerated. During 

ischemia and reperfusion, fast calcium clearing results in attenuated calcium 

accumulation in the cytosol and reduced hypercontracture of the myocytes, both of which 

contribute to the decrease in infarct size and preservation of contractile function.  
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However, we also bear in mind that the whole scenario of the signal transduction 

could be much more complicated. The signaling pathway outlined above is by no means 

the only goings-on after H2S preconditioning. Taking PKC as a nodal point, a spectrum 

of endogenous molecules, like NO, adenosine, and free radicals, could be its upstream 

triggers, while its downstream targets could range from mitogen-activated protein kinases, 

heat shock proteins to mitochondria proteins (Sanada and Kitakaze, 2004). It is more 

likely to be a signal network than single pathway which transforms the extracellular 

stimulus of H2S into the final protection.  

 

 

 

 

 

Figure 6-1. The proposed signaling pathway for SP-induced cardioprotection (the yellow route). H2S 
activates different PKC isoforms directly (dashed line) or indirectly though the opening of KATP or 
other unknown mechanisms (dashed line). The activated PKC isoforms stimulate the Ca2+ handling 
proteins (i.e. NCX and SERCA) and thereby facilitate the clearing of cytosolic Ca2+. During ischemia, 
the faster clearing of cytosolic Ca2+ induced by SP attenuates the Ca2+ accumulation and reduces 
hypercontracture. 
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In the present study, we observed three PKC isoforms activated by H2S 

preconditioning, but the inhibitor chelerythrine could not distinguish the one or ones that 

is necessary for the genesis of the late cardioprotection. It is likely that different isoforms 

act on different substrates at various subcellular sites and afford the protection from 

diverse aspects (Mackay and Mochly-Rosen, 1999). Assigning specific roles to each PKC 

isoform may depend on the availability of isoform-specific antagonists, siRNA or PKC-

isoform knockout animals. 

Using intact animal model, we also demonstrated that H2S preconditioning could 

provide much stronger protection than H2S post-treatment. This finding prompts us to 

reason that the mechanisms underlying preconditioning and post-treatment are different. 

H2S preconditioning is more likely to protect by switching the heart to a defensive state 

against ischemia insult. The opening of KATP channels, activation of PKC isoforms as 

well as altered intracellular calcium handling are accomplished prior to the attack. Thus 

even though exogenous H2S was not present at the time of attack, the protection was still 

well executed. In contrast, without H2S preconditioning, the endogenous defensive 

system could be overwhelmed by the injuries caused by lethal ischemia, and supplement 

with exogenous H2S after the attack could only provide limited benefit. The effect of H2S 

-posttreatment may only rely on the ability of sulfide to reduce inflammatory responses 

(Zanardo et al., 2006) and to neutralize cyotoxic reactive species such as peroxynitrite 

(Whiteman et al., 2004), which may relieve the oxidative stress to some extent but not 

likely to reverse infract myocardiums back to normal.  

Another important question is that the local H2S concentration achieved using sulfide 

donor is unknown. The basal H2S level in the rat serum was reported to be ~46µM and 
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physiological range was assumed to be within 50~150 µM, depending on the tissue of 

interest (Wang, 2002). However, in our in vivo study, the dose of H2S that produced 

maximum protection was at 1µmol/kg, which may increase the circulating H2S by 

10~20µM (the blood volume of a 250g rat is ~15.5ml) (Lee and Blaufox, 1985). If there 

is a substantial background level of sulfide, how is it possible that relatively small 

increment can produce so significant biological effects? One possibility is that the 

biological sulfide-eliminating systems might get saturated by sudden exposure to sulfide, 

and the non-metabolized sulfide locally in the heart triggers the downstream biological 

effects. 

However, evidence is accumulating in favor of another possibility—the exact free 

sulfide baseline levels in blood and tissues are probably lower than the reported levels. 

Although we do not question the detection of endogenous H2S, we must note that the 

reported baseline concentration of H2S is high enough to emit the characteristic 

unpleasant H2S smell, whereas the blood samples actually do not. In two recent reviews 

by Li (Li and Moore, 2008) and Szabó (Szabó, 2007), both authors mentioned that the 

colorimetric assays or ion selective electrode assays used to measure H2S concentrations 

in most studies are likely to liberate sulfide from its bound forms, thereby generating 

concentrations that are likely to represent a mixture of free and bound sulfide (Hannestad 

et al., 1989; Togawa et al., 1992; Ogasawara et al., 1993). Using a lately-developed 

polarographic H2S sensor, Whitfield and colleagues have recently reappraised sulfide 

concentration in vertebrate blood (Whitfield et al., 2008). They found that H2S gas was 

undetectable (<100nM) in blood from numerous animals, including lamprey, trout, 

mouse, rat, pig and cow. Interestingly, exogenous H2S was also rapidly removed from 
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blood or plasma. Indeed, as a highly reactive molecule, H2S could either be broken down 

rapidly by enzymes, sequestered by binding to haemoglobin, or react chemically with a 

number of species abundant in tissues, including superoxide radical, hydrogen peroxide, 

peroxynitrite and/or hypochlorite (Li and Moore, 2008). The key issue that needs to be 

addressed in future studies is how the fleeting presence of free sulfide achieved 

subsequent lasting biological effects.  

To date, simple sulfide salts, most commonly NaHS, have been the H2S-releasing 

drugs used in most biological experiments, including our present study. NaHS is known 

to release H2S instantaneously in aqueous solution. Because the release of endogenous 

H2S from cells is likely to occur in lesser amounts and at a much slower rate, NaHS may 

not mimic the biological effects of naturally produced H2S. However, based on findings 

in the current study, NaHS is able to produce both immediate and delayed protection 

against cardiac ischemia, even if it only transiently increases the circulating H2S levels. 

Thus for the preconditioning purpose, NaHS qualifies as an economical option. 

Development of organic compounds that slowly release free H2S over extended periods 

of time could be more useful for treating patients who fail to access to H2S 

preconditioning before myocardial infarction occurs or treating other diseases where long 

period of H2S treatment has shown therapeutic effects.   

Another potential area is the development of H2S as an inhaled gas or as a parenteral 

injectable. Inhaled NO has set a precedent for development of medical gases. NO was 

also first known as a toxic gas and is currently approved for use in infants with primary 

pulmonary hypertension (Kinsella and Abman, 2005; Hillier, 2003). However, the 

unpleasant odor of H2S may pose more problems for administration, which could 
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necessitate the implementation of appropriate trapping systems to prevent from spreading 

into environment and exposure of medical personnel (Szabó, 2007). With enteral or 

parenteral formulations, odor would not create a problem, but manufacturing and 

formulation issues remains challenging compared with conventional chemical compound. 

In addition, animal safety data are still lacking with respect to parenteral or enteral 

administration of H2S. Although sulfide is an endogenous substance, all exogenous 

sulfide delivery systems would be required to pass stringent safety and efficacy tests in 

preclinical animal studies before progression into human studies. 
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Chapter 7 Conclusion 

The current study demonstrated that H2S is both necessary and sufficient for the 

development of early and late phases of cardioprotection against ischemia. Cells or 

animals preconditioned with H2S displays a phenotype tolerant to experimental ischemia 

or myocardial infarction, manifested by the decreased cell death or infarct size. Such 

protection is mediated by sarcolemmal KATP channels, NO and PKC. Activation of PKC 

results in accelerated cytosolic Ca2+ clearing, which prevents development of Ca2+ 

overloading and myocyte hypercontracture during ischemia/reperfusion insult. These 

findings demonstrate the potential of H2S preconditioning as an effective intervention 

approach against ischemic heart disease. For the high-risk population, H2S 

preconditioning represents a realistic and cost-effective prevention measurement.  
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