5 research outputs found

    Detection of Novel Variations Related to Litter Size in BMP15 Gene of Luzhong Mutton Sheep ( Ovis aries )

    Get PDF
    SIMPLE SUMMARY: BMP15 is a critical gene in sheep reproduction. Most of its variations have been reported in European sheep. In this study, the entire open reading frame (ORF) region of BMP15 was sequenced in 154 Luzhong mutton sheep. Among 13 identified variations, six were novel. Four SNPs (ENSOART00000010201.1:c.352+342C>A, c.352+1232T>C, c.352+1165A>G and c.353-2036T>A) were significantly associated with litter size, and could be used as candidate genetic markers for improving litter size. The results also suggested possible interaction between BMP15 and FecB/GDF9. ABSTRACT: Litter size is an important economic trait in the mutton sheep industry. BMP15 is one of the key candidate genes for litter size in sheep. In this study, the entire ORF region of BMP15 was sequenced in 154 Luzhong mutton ewes, and the novel variations were determined. The association between polymorphism in BMP15 and litter size was analyzed using a general linear model. Six out of a total of thirteen variations were identified to be novel. Association analysis indicated that four (SNPs ENSOART00000010201.1:c.352+342C>A, c.352+1232T>C, c.352+1165A>G and c.353-2036T>A) were significantly associated with litter size. The joint analysis among three major genes (BMP15, BMPR1B and GDF9) exhibited significant interaction effects in three combinations (FecB and c.352+1232T>C of BMP15; FecB and c.352+1165A>G of BMP15; c.352+342C>A of BMP15 and ENSOART00000014382.1:c.994G>A of GDF9). For the SNPs c.352+1232T>C and c.352+342C>A, the global distribution of allele frequencies showed that the highest variation frequency occurs in Western Europe. In conclusion, the results demonstrated that BMP15 is a major gene for litter size in Luzhong mutton sheep and candidate SNPs associated with litter size were identified

    Polymorphism Detection of <i>GDF9</i> Gene and Its Association with Litter Size in Luzhong Mutton Sheep (<i>Ovis aries</i>)

    No full text
    Litter size is one of the most important economic traits in sheep. GDF9 and BMPR1B are major genes affecting the litter size of sheep. In this study, the whole coding region of GDF9 was sequenced and all the SNPs (single nucleotide polymorphisms) were determined in Luzhong mutton ewes. The FecB mutation was genotyped using the Sequenom MassARRAY®SNP assay technology. Then, the association analyses between polymorphic loci of GDF9 gene, FecB, and litter size were performed using a general linear model procedure. The results showed that eight SNPs were detected in GDF9 of Luzhong mutton sheep, including one novel mutation (g.41769606 T > G). The g.41768501A > G, g.41768485 G > A in GDF9 and FecB were significantly associated with litter size in Luzhong mutton ewes. The g.41768485 G > A is a missense mutation in the mature GDF9 protein region and is predicted to affect the tertiary structure of the protein. The results preliminarily demonstrated that GDF9 was a major gene affecting the fecundity of Luzhong mutton sheep and the two loci g.41768501A > G and g.41768485 G > A may be potential genetic markers for improving litter size

    Rational Interface Design and Morphology Control for Blade‐Coating Efficient Flexible Perovskite Solar Cells with a Record Fill Factor of 81%

    No full text
    Halide perovskites are one of the ideal photovoltaic materials for constructing flexible solar devices due to relatively high efficiencies for low‐temperature solution‐processed devices. However, the overwhelming majority of flexible perovskite solar cells are produced using spin coating, which represents a major hurdle for upscaling. Here, a scalable approach is reported to fabricate efficient and robust flexible perovskite solar cells on a polymer substrate. Thiourea is introduced into perovskite precursor solution to modulate the crystal growth, resulting in dense and uniform perovskite thin films on rough surfaces. As a decisive step, a cascade energy alignment is realized for the hole extraction layer by rationally designing a bilayer interface comprised of PEDOT:PSS/PTAA with a distinct offset in the highest occupied molecular orbital levels, enabling markedly enhanced charge extraction and spectral response. An efficiency as high as 19.41% and a record fill factor up to 81% are achieved for flexible perovskite devices processed by a scalable printing method. Equally important, the bilayer interface reinforces the bendability of the indium tin oxide substrate, leading to enhanced mechanical robustness of the flexible devices. These results underpin the importance of morphology control and interface design in constructing high‐performance flexible perovskite solar cells
    corecore