8,355 research outputs found

    Nanofiber Filaments Fabricated by a Liquid-Bath Electrospinning Method

    Get PDF
    In order to investigate the forming process of multi-needle liquid-bath electrospun nanofiber filaments, nanofiber filaments were prepared using the multi-needle liquid-bath electrospinning method in this chapter. The effect of auxiliary electrode on jet state, and bundling and drawing processes of nanofibers were studied. The results show that the forming process of nanofiber filaments was mainly influenced by electrostatic field interference, bundling process, and drawing process, including two processes: forming process of as-spun nanofiber filaments and post-drawing process. In the forming process of as-spun nanofiber filaments, when the auxiliary electrode was added, the electrostatic field interference between needles reduced, inducing the decrease of jet offsets and the enhancement of Taylor cone and jet stability, and nanofibers with skin-core structure were finally deposited on the bath in good condition. The bundling process of nanofiber filament was divided into three processes: wet process, wet-dry process, and dry process; the structure transformation of nanofiber filaments mainly occurred in the wet process. In the post-drawing process, the crystallinity and alignment degree of nanofibers increased, and nanofiber diameter decreased. The initial modulus and breaking stress of filaments increased while the breaking strain of filaments decreased. Finally, nanofiber filaments were produced with better structures and properties

    Increase in neuroexcitability of unmyelinated C-type vagal ganglion neurons during initial postnatal development of visceral afferent reflex functions

    Get PDF
    BACKGROUND: Baroreflex gain increase up closely to adult level during initial postnatal weeks, and any interruption within this period will increase the risk of cardiovascular problems in later of life span. We hypothesize that this short period after birth might be critical for postnatal development of vagal ganglion neurons (VGNs). METHODS: To evaluate neuroexcitability evidenced by discharge profiles and coordinate changes, ion currents were collected from identified A- and C-type VGNs at different developmental stages using whole-cell patch clamping. RESULTS: C-type VGNs underwent significant age-dependent transition from single action potential (AP) to repetitive discharge. The coordinate changes between TTX-S and TTX-R Na(+) currents were also confirmed and well simulated by computer modeling. Although 4-AP or iberiotoxin age dependently increased firing frequency, AP duration was prolonged in an opposite fashion, which paralleled well with postnatal changes in 4-AP- and iberiotoxin-sensitive K(+) current activity, whereas less developmental changes were verified in A-types. CONCLUSION: These data demonstrate for the first time that the neuroexcitability of C-type VGNs increases significantly compared with A-types within initial postnatal weeks evidenced by AP discharge profiles and coordinate ion channel changes, which explain, at least in part, that initial postnatal weeks may be crucial for ontogenesis in visceral afferent reflex function

    Comparative Study of In-situ Test and Laboratory Test on Material Reflectivity

    Get PDF
    AbstractThis paper gives the theory algorithm of material reflectivity, and works out the in-situ material reflectivity combined with in-situ conditions, researches the influence rules of material's reflectivity under practical solar radiation intensity, and the feasibility of this simple in-situ test method is researched by the comparison of in-situ test result and laboratory test result

    Discovery of Novel Biomarkers for Alzheimer's Disease from Blood

    Get PDF
    Blood-based biomarkers for Alzheimer’s disease would be very valuable because blood is a more accessible biofluid and is suitable for repeated sampling. However, currently there are no robust and reliable blood-based biomarkers for practical diagnosis. In this study we used a knowledge-based protein feature pool and two novel support vector machine embedded feature selection methods to find panels consisting of two and three biomarkers. We validated these biomarker sets using another serum cohort and an RNA profile cohort from the brain. Our panels included the proteins ECH1, NHLRC2, HOXB7, FN1, ERBB2, and SLC6A13 and demonstrated promising sensitivity (&gt;87%), specificity (&gt;91%), and accuracy (&gt;89%).</jats:p
    corecore