268 research outputs found

    Sample-efficient benchmarking of multi-photon interference on a boson sampler in the sparse regime

    Get PDF
    Verification of a quantum advantage in the presence of noise is a key open problem in the study of near-term quantum devices. In this work, we show how to assess the quality of photonic interference in a linear optical quantum device (boson sampler) by using a maximum likelihood method to measure the strength at which various noise sources are present in the experiment. This allows us to use a sparse set of samples to test whether a given boson sampling experiment meets known upper bounds on the level of noise permissible to demonstrate a quantum advantage. Furthermore, this method allows us monitor the evolution of noise in real time, creating a valuable diagnostic tool. Finally, we observe that sources of noise in the experiment compound, meaning that the observed value of the mutual photon indistinguishability, which is the main imperfection in our study, is an effective value taking into account all sources of error in the experiment

    Exploring Structural Diversity of Microbe Secondary Metabolites Using OSMAC Strategy: A Literature Review

    Get PDF
    Microbial secondary metabolites (MSMs) have played and continue to play a highly significant role in the drug discovery and development process. Genetically, MSM chemical structures are biologically synthesized by microbial gene clusters. Recently, however, the speed of new bioactive MSM discovery has been slowing down due to consistent employment of conventional cultivation and isolation procedure. In order to alleviate this challenge, a number of new approaches have been developed. The strategy of one strain many compounds (OSMAC) has been shown as a simple and powerful tool that can activate many silent biogenetic gene clusters in microorganisms to make more natural products. This review highlights important and successful examples using OSMAC approaches, which covers changing medium composition and cultivation status, co-cultivation with other strain(s), adding enzyme inhibitor(s) and MSM biosynthetic precursor(s). Available evidences had shown that variation of cultivation condition is the most effective way to produce more MSMs and facilitate the discovery of new therapeutic agents

    Regulating Cytoplasmic Calcium Homeostasis Can Reduce Aluminum Toxicity in Yeast

    Get PDF
    Our previous study suggested that increased cytoplasmic calcium (Ca) signals may mediate aluminum (Al) toxicity in yeast (Saccharomyces cerevisiae). In this report, we found that a yeast mutant, pmc1, lacking the vacuolar calcium ion (Ca2+) pump Ca2+-ATPase (Pmc1p), was more sensitive to Al treatment than the wild-type strain. Overexpression of either PMC1 or an anti-apoptotic factor, such as Bcl-2, Ced-9 or PpBI-1, decreased cytoplasmic Ca2+ levels and rescued yeast from Al sensitivity in both the wild-type and pmc1 mutant. Moreover, pretreatment with the Ca2+ chelator BAPTA-AM sustained cytoplasmic Ca2+ at low levels in the presence of Al, effectively making the cells more tolerant to Al exposure. Quantitative RT-PCR revealed that the expression of calmodulin (CaM) and phospholipase C (PLC), which are in the Ca2+ signaling pathway, was down-regulated under Al stress. This effect was largely counteracted when cells overexpressed anti-apoptotic Ced-9 or were pretreated with BAPTA-AM. Taken together, our results suggest that the negative regulation of Al-induced cytoplasmic Ca signaling is a novel mechanism underlying internal resistance to Al toxicity
    • …
    corecore