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Sample-efficient benchmarking of multiphoton interference on a boson sampler in the sparse regime
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Verification of a quantum advantage in the presence of noise is a key open problem in the study of near-term
quantum devices. In this work, we show how to assess the quality of photonic interference in a linear optical
quantum device (boson sampler) by using a maximum likelihood method to measure the strength at which
various noise sources are present in the experiment. This allows us to use a sparse set of samples to test whether
a given boson-sampling experiment meets known upper bounds on the level of noise permissible to demonstrate a
quantum advantage. Furthermore, this method allows us to monitor the evolution of noise in real time, creating a
valuable diagnostic tool. Finally, we observe that sources of noise in the experiment compound, meaning that
the observed value of the mutual photon indistinguishability, which is the main imperfection in our study, is an
effective value taking into account all sources of error in the experiment.
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I. INTRODUCTION

With the increasing computational power of quantum in-
formation processing devices [1–3], a pressing problem is
how to demonstrate the computational advantage of a quan-
tum device over a classical one (also known as “quantum
supremacy”). The key issue is verification, the problem of
checking that the quantum device is truly performing its
task. Ideally, a quantum advantage demonstration would be
arranged so that verification can be done efficiently in the size
of the quantum system. For example, an efficiently verifiable
quantum advantage can be demonstrated on a universal, fault-
tolerant computer by a fast solution to a problem such as prime
factoring, i.e., one whose output can be efficiently checked.
If the quantum machine can solve the posed problem much
faster than a classical computer, this would constitute very
strong evidence of the quantum nature of the device.

However, for the foreseeable future, the main devices of
experimental interest are noisy intermediate-scale quantum
(NISQ) devices, which are small-to-medium sized devices
without quantum error correction. These devices usually work
by solving a sampling problem over some probability distribu-
tion more efficiently than is believed to be possible classically
[4,5]. In photonics, this takes the form of sampling over the
output distribution of interfering photons in a linear optical
network, a problem known as boson sampling (see Fig. 1)
[6]. For such sampling problems, a no-go result says that
no device-independent sample-efficient verification protocol
exists [7].

A further problem in the demonstration of a quantum ad-
vantage using NISQ devices is the influence of noise, i.e., any
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unwanted physical effect which degrades the performance of
the device. For NISQ devices, the physical picture is that noise
pushes the distribution over which the device samples closer
to the distribution associated with classical operation of the
device [8]. For quantum advantage demonstrations based on
random circuit sampling [1], it was recently suggested that if
the noise pushes the system toward the uniform distribution,
any level of noise which does not completely revert the de-
vice to sampling over a classical distribution is sufficient to
maintain a quantum advantage [9].

For boson sampling, in contrast, pseudoprobability distri-
butions are known which approximate the sampling distri-
bution in the presence of noise [10–15], and from which it
is believed to be possible to sample efficiently. The distance
between these distributions and the output distribution of the
device depends on the level of noise, and for sufficiently high
levels of noise the two distributions are close, ruling out a
quantum advantage in that regime.

However, the application of such classicality thresholds
requires knowledge of which noise sources are present in a
boson sampler, and at what strength. The main sources of
noise in a boson sampler are photon loss [16,17] and partial
indistinguishability [18]. So far, the level of noise in boson
sampling experiments was mostly inferred by measuring the
complete output distribution and comparing it to the ideal
(i.e., noiseless) output distribution, where the experiment is
declared a success if the distance between these is sufficiently
low. However, this approach is inherently nonscalable in the
number of measurements required [6] since the probability of
observing any single outcome decreases exponentially with
the number of photons. The other approach was to compare
the hypothesis of fully distinguishable photons with that of
fully indistinguishable ones [19], which does not capture the
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full range of possible effects in the device [18]. This issue
recently became pressing with the demonstration of the first
boson sampler operating in the sparse regime [3], i.e., where
only a sparse set of samples can be collected due to the size
of the Hilbert space. With “sparse” we mean a set of sam-
ples which is of insufficient size to reconstruct the complete
probability distribution to fixed accuracy. Since the number
of samples required to reconstruct the distribution grows ex-
ponentially with the number of photons, the ability to infer
photon indistinguishabilities from a sparse set of samples is a
strongly desired feature.

In this work, we show that all information required to
assess the quality of quantum interference in a boson sam-
pler is contained in just a sparse set of samples. We use a
maximum likelihood method to infer the relevant properties of
the photons, in particular their mutual indistinguishability. We
apply this method to samples produced on the experimental
apparatus reported in [3]. There is a discrepancy between
indistinguishability as inferred from the list of samples and
that inferred from a direct, independent measurement of the
indistinguishability. We explain this by demonstrating that all
other imperfections result in a decrease of the indistinguisha-
bility. The value inferred from the samples must therefore be
interpreted as an effective value taking into account many
sources of noise. Using this fact, we can construct an error
budget for a boson sampler. We also show how to use this
method to monitor the quality of photonic interference in
real time. Our method is an extension of Hong-Ou-Mandel
interference [20] to measure the mutual overlap of photons in
a highly complex multiphoton, multimode case. We show that
our method is efficient in the number of samples required to
produce an estimate of the indistinguishability. It is, however,
not efficient in the computational resources required to obtain
this estimate.

Together with the results on the permissible level of noise
in a boson sampler [10–15], these results enable testing
whether a given boson sampling experiment passes the known
requirements to exhibit a quantum advantage.

Our work is structured as follows: We begin with an
overview of the experimental apparatus. We then detail our
maximum likelihood analysis method. Finally, we conduct
numerical simulations to show that the effect of other imper-
fections is to decrease the degree of indistinguishability.

II. EXPERIMENTAL IMPERFECTIONS

The experimental apparatus on which our data set was
generated consists of an InAs/GaAs quantum-dot source op-
erating at 893 nm pumped with a pulsed laser with 1.2 nW
intensity and a repetition rate of 76 MHz, corresponding to
a pulse energy of 1.6 × 10−17 J. This single-photon source is
then demultiplexed using a tree of 19 Pockels cells, and fed
into a fixed free-space interferometer with 60 optical modes,
where quantum interference occurs. Finally, detection is done
by a bank of superconducting single-photon detectors which
are fiber-coupled to these modes. Samples consist of the set of
detectors which are triggered in each run of the experiment,
and are recorded using standard correlation electronics. More
details of the setup are provided in [3].

The data set under consideration here consists of lists of
samples from this device. For simplicity of the analysis, posts-
election was used to focus on those samples where the number
of photons incident is equal to the number of detection events
reported, thereby removing the effect of photon loss from
consideration. The number of detected photons varied be-
tween n = 3 and n = 7, with the length of the list of samples
varying from 161 at n = 6 to 3 × 104 at n = 3. Besides the
samples, the data set also contains the independently charac-
terized transmission matrix M of the interferometer. A further
restriction on the list of samples arises from the threshold
nature of the detectors, namely that all samples must be
collision-free in order to be registered; i.e., all n photons must
emerge from distinct output modes.

This experimental setup contains four imperfections of
note, which result in samples which do not correspond to
ideal n-photon quantum transmission in the interferometer.
First, the generated photons are not perfectly indistinguish-
able. Second, the input states occasionally contain additional
noise photons. This results in samples where one single pho-
ton is lost, but where this is compensated by one of the
modes containing two photons instead, preserving the total
photon number. Third, the detectors in the system produce
dark counts, resulting in events where one photon is lost
and replaced by a dark count. Finally, there is uncertainty in
measuring the transmission matrix M, resulting in differences
between the actual and expected interference patterns.

III. EXPERIMENTAL RESULTS

In this section, we will measure the decree of imperfections
present in the experiment. We will model all imperfections as
decreasing the level of indistinguishability. In the next section,
we will show a numerical model that demonstrates that this
approximation is appropriate.

To measure the level of partial indistinguishability, we
use a standard maximum likelihood approach. The intuition
behind the maximum likelihood method is that if we have
some probability distribution p, which is a function of a set
of parameters θ, we can estimate θ from a list of samples by
the following expression: θml = argmaxθ [�(θ )], with �(θ ) =∏

i pi(θ ); i.e., we must maximize with respect to θ the total
likelihood to find the observed series of samples.

In a boson sampler operating at some level of partial in-
distinguishability, the probability of a given outcome can be
written as [21–23]

P(M, S) =
∑
σ∈Sn

(∏
j

S j,σ j

)
Perm

(
M ◦ M†

σ,1

)
, (1)

where S is a matrix of indistinguishabilities defined element-
wise as Si j = 〈xi|x j〉, |x〉i is the internal wave function of the
ith photon, Perm is the permanent function, σ is a permutation
of size n, indices on matrices denote permutation according to
those indices, M is the submatrix of U connecting the modes
containing an input photon to the outputs of interest [24], and
◦ is the elementwise product.

It is this matrix S which we are interested in estimating.
Throughout this work, we will parametrize S elementwise as
Si j = x + (1 − x)δi j ; i.e., we assume that all pairs of photons
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FIG. 1. A sketch of a boson sampler. A series of n modes out of
a large linear interferometer are fed with single photons, and samples
from the resulting distribution are recorded at the output.

have equal overlap with each other, which we can then set
to be real without loss of generality. We will show in the
Appendix that it is an appropriate parametrization of S for our
experimental data.

A complication arises because we are sampling over the
subset of collision-free events due to the threshold nature of
the detector. This means that we must assign probability 0 to
events containing a collision, and increase the probability of
noncollision events by a factor C, where C(x) = 1/

∑
i Pi(x)

is the normalization factor obtained by summing all noncolli-
sion events. The total probability of obtaining a noncollision
event depends on the level of indistinguishability, meaning
that C(x) must form part of the estimation. We estimate C(x)
using a Monte Carlo procedure, sampling uniformly over 104

possible output modes.
Figure 2 illustrates the intuition behind the maximum like-

lihood approach for boson sampling. The main figure shows
ten arbitrarily chosen samples from our experiment, for n = 7,

as a function of the level of mutual indistinguishability x.
By noting which samples we have observed, we can obtain
information about the level of indistinguishability at which

FIG. 2. The probability of observing 10 arbitrarily chosen output
configurations (i.e., sets of photon detection events) as a function
of partial photon indistinguishability x. Note the nonmonotonic be-
havior in some of these curves. Inset: Monte Carlo estimate of the
correction factor arising from the restriction of our data set to colli-
sionless samples.

FIG. 3. (a) Maximum likelihood estimation of the partial in-
distinguishability x = 〈ψi|ψ j〉, from a sparse series of samples.
(b) Log-likelihood functions plotted between 0 � x � 1. The colors
indicate the number of photons. (c) Numerical simulation of the
accuracy of our experiment, normalized to a constant number of
samples.

our sampler is operating. The inset shows our Monte Carlo
estimate of the fraction of collision events [i.e., 1 − 1/C(x)].
Note that the probability of a collision event goes up strongly
as a function of photon number.

Figure 3(a) shows the results of our estimation. We com-
pute that across all our experiments, our photons have a mean
wave function overlap of x = 0.89 ± 0.02, as shown by the
black points in Fig. 3(a), corresponding to a HOM dip depth
of x2 = 0.79. The error bars in Fig. 3(a) are given by the point
where the relative likelihood is smaller than 0.05. There is no
statistically significant trend in our measured indistinguisha-
bilities as a function of photon number. Figure 3(b) shows the
likelihood functions evaluated from 0 < x < 1. Note that for
all n, �(x = 1) � �(x = 0), which explains why the effect
of partial indistinguishability was not detected by previous
tests, which compared only fully distinguishable and fully
indistinguishable photons [3], or combinations of such [19],
as was noted previously by [25].

Figure 3(c) shows an estimate of the accuracy of our
method, as a function of photon number. The variation in the
size of the error bars in Fig. 3(a) is mainly attributable to the
vastly differing numbers of samples. To get an estimate of
the efficiency per sample, we numerically simulate processing
10 000 samples of each photon number at x = 1, and compute
the resulting uncertainty in estimating x by looking at the rela-
tive likelihood. We find that the error of our method decreases
with the number of photons. The intuition behind this is that
since the indistinguishability is a polynomial of degree n in x
[10], increasing the number of photons increases the changes
in probability around the maximum of the likelihood function.

IV. MODELING THE EXPERIMENT

Figure 3 raises a question: If the wave function overlap
between our photons is approximately x = 0.89 ± 0.02, why
does an independent measurement of the overlap between
our photons via the Hong-Ou-Mandel (HOM) effect measure
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TABLE I. Error budget for a boson sampler. The first column
shows the value of the indistinguishability when that particular im-
perfection and the ones above it in the table are applied. The second
column shows the relative likelihood of the corresponding value of x
as derived from the simulation, normalized to the maximum value of
the likelihood function derived from the experimental data.

Imperfection Value of x inferred log10 (�s/�e)

x from HOM experiment 0.981 ± 0.002 −130
Misspecification of M 0.970 ± 0.008 −83

Multiphoton states 0.924 ± 0.009 −2.5
Dark counts 0.913 ± 0.010 0

x = 0.981 [26]? The answer to this question is that imper-
fections in boson sampling compound one another, resulting
in an effective reduction of the photon indistinguishability.
This was shown theoretically for indistinguishability and loss
[11], as well as for indistinguishability and noise on M [12].
We must look to the other noise sources in our experiment
to explain the discrepancy between our inferred x and that
observed from HOM measurements, which are themselves not
affected by the other imperfections mentioned in Sec. II.

To demonstrate this physical mechanism, we have per-
formed a full numerical simulation of our experiment, for
n = 3. We generate a set of samples which contains all im-
perfections, at the strengths at which we have independently
measured them to be present in the experiment [27]: a 3%
probability of a dark count, a 1.2% probability of double
photon emission per mode, and approximately 1% error on
measuring the elements of M. We then analyze these samples
using the same procedure which we used to analyze the actual
experimental data, and report on the observed value of x.
We account for dark counts by adding some samples with
n = 2 among all three possible combinations of pairs of input
modes, and generating the third detection event according to
the measured dark count rate of our detectors. We account
for multiphoton emission by generating samples from all nine
combinations of states containing two of the wanted photons
and one noise photon. We account for misspecification on the
interferometer by perturbing our observed interferometer M
with elementwise Gaussian noise.

Table I shows the impact of these noise sources. By
performing a series of simulations where we switch these
imperfections on one at a time, and reconstructing x, we can
get an idea of the cumulative impact which each of these
imperfections has on our boson sampler. Table I therefore
constitutes an error budget for our boson sampler. In partic-
ular, it shows that the effect of multiphoton states is almost
a factor 4 larger than that of misspecification of M and of
dark counts, but of the same order as the reduction of x due to
true indistinguishability. This shows that the main challenges
in improving the quantumness of our boson sampler lie in
improving the quantum dot source.

To compare our simulation to our experimental data, we
also report the likelihood of the value of x from our simu-
lations (�s) relative that of the experimental data (�e). This
shows that when we “switch on” all imperfections, our simula-
tion predicts a value of x within the error bar of the one which
we measure in our experiment, and hence that our simulation

FIG. 4. Real-time monitoring of the effective degree of photon
indistinguishability in a boson sampler as a function of excitation
power. To decrease the effective degree of indistinguishability, the
pump power on the quantum dot single photon source was increased
to push the excitation away from the ideal π pulse (indicated with
a dashed line). The black curve shows a rolling average estimate of
x, averaging over 10 000 consecutive samples, with the gray band
showing the 95% confidence interval.

and our measurement are consistent. This validates the picture
of our inferred maximum likelihood indistinguishability value
being essentially an effective value that takes into account all
other known sources of error in the experiment.

V. REAL-TIME MONITORING

A practical application of our result is that we can monitor
the strength of the noise sources in our experiment in real time.
In this way, we open up a diagnostic tool for stabilizing an
experimental boson sampling setup.

To illustrate this procedure, Fig. 4 shows a case in which
we have artificially increased the g(2) of our photon source
by increasing the excitation power of the pump pulse from
1.19 × 10−17 mJ to 4.58 × 10−17 mJ. To obtain the ith point
in this graph, we compute the maximum likelihood estimate
of the ith to i + 10 000th consecutive samples from the ex-
periment. The resulting estimate shows a clear continuous
decrease in the effective photon indistinguishability. It takes
approximately 0.1 ms on a standard laptop to analyze each
sample, demonstrating the feasibility of using this monitoring
method in real time.

VI. DISCUSSION AND CONCLUSION

An important restriction in our approach is that Eq. (1)
is expensive to evaluate, since it requires the computation of
n! many permanents, each of which comes at a cost of n2n

computational steps. This can be reduced to 2n22n by applying
a multidimensional extension to Ryser’s formula [18], but this
still restricts application of this approach to approximately
25 photons [28]. Two approaches are possible: either to use
the approximate probabilities of [10–15], or to use simpler
circuits for the measurement of x, as was done in the bench-
marking of Google’s random circuit sampling experiment [1].
We leave the issue of finding the appropriate circuits for the
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photonic case as an open problem for future work. Another
further extension of this work would be to strengthen our
belief in the thresholds for classicality by connecting them
to a complexity conjecture, as was done for random circuit
sampling [9].

In conclusion, we have demonstrated how to infer the qual-
ity of a boson sampler from a sparse series of samples. We
have demonstrated that the measured indistinguishability is an
effective value, which accounts for a series of imperfections.
These results show how to demonstrate that a candidate quan-
tum advantage demonstration using photonics outperforms
the best known simulation algorithms.
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APPENDIX

1. Model selection

In the main text, we assert that the optimal model for as-
sessing the effect of distinguishability is that of a single wave
function overlap x, which is equal for all pairs of photons. In
this section, we provide the reasoning for this claim.

To maximize our likelihood function, we must find an
appropriate parametrization of S. Since S is a Gram matrix
(i.e., a matrix of inner products), it can be of rank up to n,

but it cannot have arbitrary form. For example, it must be pos-
itive semidefinite. Parametrizing S amounts to parametrizing
the internal states of the photons |ψ〉, which in principle can
live in an infinite-dimensional Hilbert space. However, since
we are only interested in the overlap 〈ψi|ψ j〉, for full general-
ity it suffices to specify the coefficients of |ψi〉 on n basis vec-
tors |βi〉, as well as on a single “remainder” state |φi〉 per pho-
ton, which is defined as 〈φi|φ j〉 = δi j , which covers the part
of the wave function not interfering with any other photon.

However, we find that parametrizing S in its full generality
is impractical, since this introduces order n2 parameters which
must be estimated simultaneously. Instead, we use insight into
the workings of our photon source to build a series of mod-
els of escalating complexity. We then use a standard model
selection method to test which level of model complexity is
necessary to explain our data.

In the simplest model, all pairs of photons have identical
mutual distinguishability x, which then can be set to be real
without loss of generality [10]; i.e., we set |ψi〉 = √

x|β〉 +√
1 − x|φi〉. This results in a matrix S of the form explored in

Fig. 2. This model has a single free parameter. This model
is motivated by the idea that our quantum dot source and
demultiplexer are operating in a regime where all photons in-
cident into the interferometer should have equal wave function
overlap [3].

In the next simplest model, we allow the overlap be-
tween photons to vary, but we still constrain the overlaps to
be real, i.e., |ψi〉 = √

xi|β〉 + √
1 − xi|φi〉. This model has n

free parameters, namely the xi, and allows for fluctuations
in the states produced by our quantum dot source. Finally,

it is known that when operating at partial distinguishability,
the phase of the wave function overlap can play a role as
well, provided there are two orthogonal internal states in
which the photons overlap [29]. To account for this possibil-
ity, we also attempt the state |ψi〉 = √

x1|β1〉 + √
x2eiφ2 |β2〉 +√

1 − x1 − x2|φi〉. This model has 3n free parameters, namely
two wave function overlaps per photon and one phase.

To distinguish which of these parametrizations is appropri-
ate, we use the Akaike information criterion (AIC), a standard
method of selecting models given some data set. The AIC
asserts that when we have competing models, the model that
minimizes the parameter AIC = 2k − log(�) is the one to be
preferred, where � is the maximum value of the likelihood
function associated with that model, and k is the number
of free parameters. The AIC balances in a meaningful way
between model complexity and goodness of fit, and protects
against overfitting.

For each observed model, we compute the likelihood
function belonging to that parametrization, and optimize nu-
merically using standard Matlab routines. We then use the
value of the likelihood function at the maximum and the
number of parameters to evaluate which model is preferred.
We ignore the effect of only observing collision-free sam-
ples, for the moment, due to the difficulty in estimating C(S)
for arbitrary S with sufficient accuracy to perform numerical
optimization.

For n = 3 and n = 4, we find that the optimal model is
one with arbitrary wave function overlaps, but no phases.
For n � 4, we find that the optimal model is one with a
single wave function overlap. The model with phases is never
strongly preferred. This last fact is physically understandable,
as arranging for such phases to enter the problem requires
the wave function of the photons to overlap substantially in
two orthogonal internal states, while in a quantum interference
experiment such as this much care has been put into making
sure the photons all overlap along a single internal state.
Furthermore, as all photons come from the same quantum
dot, it is perhaps no surprise that their degree of overlap is
approximately equal for all pairs.

We proceed with the parametrization of X by a single wave
function overlap x for all n, for the following two reasons.
First, the differences in wave function overlap predicted by
the second model are small (approximately 3%), and while
the difference is statistically significant, the effect of these
variations on the complexity is slight. Second, for reasons of
computation time and numerical stability we can only esti-
mate C(S) in the simplest parametrization, and for n � 4 the
effect of C(S) is highly significant in estimating S. There-
fore, we proceed by computing C(x) in the single-overlap
parametrization by Monte Carlo simulation and maximizing
the likelihood function as a function of x.

2. Error budget of the experiment

In this subsection, we describe in more detail the simula-
tion behind the error budget (Table I) in the main text.

We identify the following noise sources in the experiment:
finite accuracy to which the transmission matrix M can be
measured (i.e., a static version of Kalai-Kindler noise [30]),
dark counts, and multiphoton emissions [i.e., nonzero g(2)(0)].
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To assess the effect of these imperfections, we performed
a series of numerical simulations of the entire experiment
and data processing. These simulations consist of two steps:
first, we generate data simulated sets of samples, to mimic the
experiment and its imperfections. For this, we use a Markov
chain Monte Carlo sampler, in the style of Neville et al. [31],
with a burn-in of 100 samples and a thinning factor of 100
samples. The sampler generates 3 × 104 samples (after thin-
ning) per numerical simulation, and each simulation was per-
formed 100 times to ensure statistical accuracy. The sampler
takes into account the fact that the experiment cannot generate
collision samples, and we include a numerical estimate of
C(x) in our data processing. In this sampler, we incorporate
the imperfections as detailed below. Then, we process the data
using the same code we used to process the experimental data,
and compare the values of x which we obtain.

Below, we will detail the main sources of imperfections,
how we include them in the sample generation. Since previ-
ously the effect of g2 was not taken into account separately,
the value of x inferred from the HOM experiment has to
be corrected for finite g2 as well. Note that we simulate all
imperfections only to first order; i.e., we assume no dou-
ble imperfections, or mixtures of imperfections (e.g., two
simultaneous dark counts). Since the probability of all our
imperfections is at the 10−2 level, the second-order correction
is at least an order of magnitude lower than that, and hence
this is justified.

In what follows, we will focus on the n = 3 experiment.
This has a few reasons. First, this is computationally the least
intensive data set to work with. Second, it is the data set that
suffers least from the problem that the experiment cannot
register collision-carrying samples, which might otherwise
distort the data. Third, this is the largest data set, which means
that the statistical error on estimating x is the lowest. This data
set has x = 0.913+0.008

−0.009 using a 95% confidence level.

a. Simulation of mischaracterization of M

To estimate the accuracy to which M was measured, the
following procedure was carried out: from the experimentally
measured matrix M, we compute the product M†M, which
should be the identity. In practice, measurement errors mean
that it is equal to M†M = I + δ, where δ is a matrix with
nonzero off-diagonal elements, where the mean value of the
mod-square of the elements of δ is 〈|δi j |2〉 ≈ 0.02. We model
the measurement noise on M as multiplicative i.i.d. Gaussian,
i.e., Mexp = Mtrue(I + ε), where ε is an i.i.d. Gaussian matrix.
Solving the equations gives that 〈|ε|2〉 = 0.01; i.e., 1% inten-
sity noise on M produces the observed 2% intensity deviations
in M†M.

We then simulate the effect of mischaracterization of M by
generating our samples with Mtrue, and analyzing our samples
with Mexp We also perform the estimate of the correction
factor C(x), which accounts for the lack of collision-carrying
samples, using Mexp.

b. Estimate of dark count rate

To estimate the dark count rate, the following procedure
was carried out: a set of dark count measurements with the
same integration time as the 3-photon experiment was used.
Summing over all detectors gives a total number of counts of
∼9 × 107. The total number of dark counts is approximately
9 × 105, leading to an estimate of the dark count probability of
approximately 1%. This means that in a 3-photon experiment,
approximately 3% of all samples contain a dark count (since
the probability of 2 simultaneous dark counts is order 10−4,
this is negligible).

We model the effect of dark counts by replacing 900 of
our 3 × 104 samples with samples where we generate 2-
photon samples (with the same value of x as for the 3-photon
samples) and add a uniformly randomly chosen third mode
to represent the dark count. The 900 samples are made up
of 300 samples from each of the 3 possible ways a photon
can be lost (i.e., numbering the input modes 1 to 3, sin =
{[1, 2], [1, 3], [2, 3]}). This simulation makes the approxima-
tions that both the dark count rate of the detector and the loss
in each channel are uniform.

c. Estimate of g2

The g2 rate was measured to be g2(0) = 0.023. We as-
sume that this is entirely due to 2-photon contributions in
the state. Inverting the definition of g2 shows that in 1.2% of
the cases, when prompted for a single photon, instead, two
will be present. This is due to pump light of the laser leaking
through into the experiment; we therefore model this photon
as being completely distinguishable from the other photons
in the experiment. Elementary combinatorics shows that there
are 9 ways in which the additional photon can replace one
of the photons in the experiment. We simulate the effect of
this error by generating samples from all these 9 possible
configurations. These samples are then used to replace the
same number of samples from the “good” data set, to simulate
this imperfection.

d. Correction of distinguishability for finite g2

To correct the raw value of x = 0.961 for finite g2, we
calculated the HOM dip depth as a function of the real
photon indistinguishability, taking into account the effect of
multiphoton states. We compute the output probability of a
coincidence count for a 3-photon sin = [1, 1, 2] state, where
the second photon is distinguishable from the others, which
together with the usual expressions for the 2-photon case gives
us the probability of a coincidence detection event on and
outside of the HOM dip (i.e., when x = xcorr and when x =
0, respectively). Then, we invert the equation for the HOM
dip (DHOM = 1 − Pxtrue/Px=0). Solving this equation gives
x = 0.981.
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