207 research outputs found

    Production of N-acetyl-D-neuraminic acid using two sequential enzymes overexpressed as double-tagged fusion proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two sequential enzymes in the production of sialic acids, N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase) and <it>N</it>-acetyl-D-neuraminic acid aldolase (Neu5Ac aldolase), were overexpressed as double-tagged gene fusions. Both were tagged with glutathione S-transferase (GST) at the N-terminus, but at the C-terminus, one was tagged with five contiguous aspartate residues (5D), and the other with five contiguous arginine residues (5R).</p> <p>Results</p> <p>Both fusion proteins were overexpressed in <it>Escherichia coli </it>and retained enzymatic activity. The fusions were designed so their surfaces were charged under enzyme reaction conditions, which allowed isolation and immobilization in a single step, through a simple capture with either an anionic or a cationic exchanger (Sepharose Q or Sepharose SP) that electrostatically bound the 5D or 5R tag. The introduction of double tags only marginally altered the affinity of the enzymes for their substrates, and the double-tagged proteins were enzymatically active in both soluble and immobilized forms. Combined use of the fusion proteins led to the production of <it>N</it>-acetyl-D-neuraminic acid (Neu5Ac) from <it>N</it>-acetyl-D-glucosamine (GlcNAc).</p> <p>Conclusion</p> <p>Double-tagged gene fusions were overexpressed to yield two enzymes that perform sequential steps in sialic acid synthesis. The proteins were easily immobilized via ionic tags onto ionic exchange resins and could thus be purified by direct capture from crude protein extracts. The immobilized, double-tagged proteins were effective for one-pot enzymatic production of sialic acid.</p

    Influences of sea water on the ethylene-biosynthesis, senescence-associated gene expressions, and antioxidant characteristics of Arabidopsis plants

    Get PDF
    We evaluated the physiological and antioxidant characteristics of Arabidopsis thaliana (At) plants grown in different sea water (SW) products containing trace elements, namely RO3, 300K, and 340K, at various dilutions. The synthetic water (namely 300K-Test), a mixture of the main ions of SW including 143.08 mg L-1 Mg2+, 5.74 mg L-1 Na+, 170 mg L-1 K+, and 33.5 mg L-1 Ca2+ with equal concentrations to those in 300K SW without trace elements, was also used to culture At plants and study the influences that the major ions had on regulating ethylene production. The ethylene-biosynthesis (ACS7 and ACO2) and senescence-associated (NAP, SAG113, and WRKY6) gene expressions in SW- and ionic-treated At plants in response to transcriptional signaling pathways of ethylene response mechanisms were also investigated. Our results show that down-regulation of the ACS7 gene in 300K-treated plants significantly reduced the ethylene content but remarkably increased chlorophyll, total phenol, and DPPH radical scavenging accumulations and strengthened the salt tolerance of 300K-treated plants. The expression of the ACS7 gene of At plants under 300K, Ca2+, Mg2+, and Na+ treatments was correlated with decreases in NAP, SAG113, and WRKY6 gene expressions. The application of Ca2+ increased total phenol content and reduced the accumulation of superoxide, which in combination decreases plant aging brought on by ethylene. However, K+ treatment inhibited SGA113 gene expression, resulting in reducing ACS7 gene expression and ethylene content. The characterization and functional analysis of these genes should facilitate our understanding of ethylene response mechanisms in plants

    Non-invasive and transdermal measurement of blood uric acid level in human by electroporation and reverse iontophoresis

    Get PDF
    The aim of this study was to find out the optimum combination of electroporation (EP) and reverse iontophoresis (RI) on noninvasive and transdermal determination of blood uric acid level in humans. EP is the use of high-voltage electric pulse to create nano-channels on the stratum corneum, temporarily and reversibly. RI is the use of small current to facilitate both charged and uncharged molecule transportation across the skin. It is believed that the combination of these two techniques has additional benefits on the molecules’ extraction across the human skin. In vitro studies using porcine skin and diffusion cell have indicated that the optimum mode for transdermal uric acid extraction is the combination of RI with symmetrical biphasic direct current (current density = 0.3 mA/cm2; phase duration = 180 s) and EP with 10 pulses per second (voltage = 100 V/cm2; pulse width = 1 ms). This optimum mode was applied to six human subjects. Uric acid was successfully extracted through the subjects’ skin into the collection solution. A good correlation (r2 = 0.88) between the subject’s blood uric acid level and uric acid concentrations in collection solutions was observed. The results suggest that it may be possible to noninvasively and transdermally determine blood uric acid levels

    Novel curcumin analogs to overcome EGFR–TKI lung adenocarcinoma drug resistance and reduce EGFR–TKI-induced GI adverse effects

    Get PDF
    Curcumin () down-regulates the expression as well as phosphorylation of epidermal growth factor receptor (EGFR) in lung adenocarcinoma cells expressing gefitinib-resistant EGFR. Thirty-seven newly synthesized curcumin analogues including dimethoxycurcumin (, DMC) were evaluated for their effects on EGFR expression as well as phosphorylation in two gefitinib-resistant lung adenocarcinoma cell lines, CL1-5 (EGFR) and H1975 (EGFR). Based on the identified structure–activity relationships, methoxy substitution at C-3′, C-4′, or both positions favored inhibitory activity (compounds , , , –, , ), while compounds with more polar substituents were generally less active in both cell lines. Compound with a fluorine substituent at C-6′ and its protonated counterpart did not lose activity, suggesting halogen tolerance. In addition, a conjugated linker was essential for activity. Among all evaluated curcumin derivatives, compound showed the best inhibitory effects on both wild-type and mutant EGFR by efficiently inducing gefitinib-insensitive EGFR degradation. Compound also reduced gefitinib-induced gastrointestinal damage in the non-transformed intestinal epithelial cell line IEC-18

    Genome-Wide Association Study of Young-Onset Hypertension in the Han Chinese Population of Taiwan

    Get PDF
    Young-onset hypertension has a stronger genetic component than late-onset counterpart; thus, the identification of genes related to its susceptibility is a critical issue for the prevention and management of this disease. We carried out a two-stage association scan to map young-onset hypertension susceptibility genes. The first-stage analysis, a genome-wide association study, analyzed 175 matched case-control pairs; the second-stage analysis, a confirmatory association study, verified the results at the first stage based on a total of 1,008 patients and 1,008 controls. Single-locus association tests, multilocus association tests and pair-wise gene-gene interaction tests were performed to identify young-onset hypertension susceptibility genes. After considering stringent adjustments of multiple testing, gene annotation and single-nucleotide polymorphism (SNP) quality, four SNPs from two SNP triplets with strong association signals (−log10(p)>7) and 13 SNPs from 8 interactive SNP pairs with strong interactive signals (−log10(p)>8) were carefully re-examined. The confirmatory study verified the association for a SNP quartet 219 kb and 495 kb downstream of LOC344371 (a hypothetical gene) and RASGRP3 on chromosome 2p22.3, respectively. The latter has been implicated in the abnormal vascular responsiveness to endothelin-1 and angiotensin II in diabetic-hypertensive rats. Intrinsic synergy involving IMPG1 on chromosome 6q14.2-q15 was also verified. IMPG1 encodes interphotoreceptor matrix proteoglycan 1 which has cation binding capacity. The genes are novel hypertension targets identified in this first genome-wide hypertension association study of the Han Chinese population

    Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B Overexpression in HCC

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the significance of Aurora B expression in hepatocellular carcinoma (HCC).</p> <p>Methods</p> <p>The <it>Aurora B </it>and <it>Aurora A </it>mRNA level was measured in 160 HCCs and the paired nontumorous liver tissues by reverse transcription-polymerase chain reaction. Mutations of the <it>p53 </it>and <it>β-catenin </it>genes were analyzed in 134 and 150 tumors, respectively, by direct sequencing of exon 2 to exon 11 of <it>p53 </it>and exon 3 of <it>β-catenin</it>. Anticancer effects of AZD1152-HQPA, an Aurora B kinase selective inhibitor, were examined in Huh-7 and Hep3B cell lines.</p> <p>Results</p> <p><it>Aurora B </it>was overexpressed in 98 (61%) of 160 HCCs and in all 7 HCC cell lines examined. The overexpression of <it>Aurora B </it>was associated with <it>Aurora A </it>overexpression (<it>P </it>= 0.0003) and <it>p53 </it>mutation (<it>P </it>= 0.002) and was inversely associated with <it>β</it>-<it>catenin </it>mutation (<it>P </it>= 0.002). <it>Aurora B </it>overexpression correlated with worse clinicopathologic characteristics. Multivariate analysis confirmed that <it>Aurora B </it>overexpression was an independent poor prognostic factor, despite its interaction with Aurora A overexpression and mutations of <it>p53 </it>and <it>β</it>-<it>catenin</it>. In Huh-7 and Hep3B cells, AZD1152-HQPA induced proliferation blockade, histone H3 (Ser10) dephosphorylation, cell cycle disturbance, and apoptosis.</p> <p>Conclusion</p> <p><it>Aurora B </it>overexpression is an independent molecular marker predicting tumor invasiveness and poor prognosis of HCC. Aurora B kinase selective inhibitors are potential therapeutic agents for HCC treatment.</p

    Rapid induction of orthotopic hepatocellular carcinoma in immune-competent rats by non-invasive ultrasound-guided cells implantation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The fact that prognoses remain poor in patients with advanced hepatocellular carcinoma highlights the demand for suitable animal models to facilitate the development of anti-cancer medications. This study employed a relatively non-invasive approach to establish an orthotopic hepatocellular carcinoma model in immune-competent rats. This was done by ultrasound-guided implantation of cancer cells and the model was used to evaluate the therapeutic efficacy of short-term and low-dose epirubicin chemotherapy.</p> <p>Methods</p> <p>Rat Novikoff hepatoma cells were injected percutaneously into the liver lobes of Sprague-Dawley rats under the guidance of high resolution ultrasound. The implantation rate and the correlation between dissected and ultrasound-measured tumor sizes were evaluated. A similar induction procedure was performed by means of laparotomy in a different group of rats. Pairs of tumor measurement were compared by ultrasound and computerized tomography scan. Rats with a successful establishment of the tumor were divided into the treatment (7-day low-dose epirubicin) group and the control group. The tumor sizes were non-invasively monitored by the same ultrasound machine. Blood and tumor tissues from tumor-bearing rats were examined by biochemical and histological analysis respectively.</p> <p>Results</p> <p>Ultrasound-guided implantation of Novikoff hepatoma cells led to the formation of orthotopic hepatocellular carcinoma in 60.4% (55/91) of the Sprague-Dawley rats. Moreover, tumor sizes measured by ultrasound significantly correlated with those measured by calipers after sacrificing the animals (<it>P </it>< 0.00001). The rate of tumor induction by ultrasound-guided implantation was comparable to that of laparotomy (55/91, 60.4% vs. 39/52, 75%) and no significant difference in sizes of tumor was noted between the two groups. There was a significant correlation in tumor size measurement by ultrasound and computerized tomography scan. In tumor-bearing rats, short-term and low-dose epirubicin chemotherapy caused a significant reduction in tumor growth, and was found to be associated with enhanced apoptosis and attenuated proliferation as well as a decrease in the microvessel density in tumors.</p> <p>Conclusions</p> <p>Ultrasound-guided implantation of Novikoff hepatoma cells is an effective means of establishing orthotopic hepatocellular carcinoma in Sprague-Dawley rats. Short-term and low-dose epirubicin chemotherapy had perturbed tumor progression by inducing apoptosis and neovascularization blockade.</p

    Functional Redundancy of Two Pax-Like Proteins in Transcriptional Activation of Cyst Wall Protein Genes in Giardia lamblia

    Get PDF
    The protozoan Giardia lamblia differentiates from a pathogenic trophozoite into an infectious cyst to survive outside of the host. During encystation, genes encoding cyst wall proteins (CWPs) are coordinately induced. Pax family transcription factors are involved in a variety of developmental processes in animals. Nine Pax proteins have been found to play an important role in tissue and organ development in humans. To understand the progression from primitive to more complex eukaryotic cells, we tried to identify putative pax genes in the G. lamblia genome and found two genes, pax1 and pax2, with limited similarity. We found that Pax1 may transactivate the encystation-induced cwp genes and interact with AT-rich initiatior elements that are essential for promoter activity and transcription start site selection. In this study, we further characterized Pax2 and found that, like Pax1, Pax2 was present in Giardia nuclei and it may specifically bind to the AT-rich initiator elements of the encystation-induced cwp1-3 and myb2 genes. Interestingly, overexpression of Pax2 increased the cwp1-3 and myb2 gene expression and cyst formation. Deletion of the C-terminal paired domain or mutation of the basic amino acids of the paired domain resulted in a decrease of nuclear localization, DNA-binding activity, and transactivation activity of Pax2. These results are similar to those found in the previous Pax1 study. In addition, the profiles of gene expression in the Pax2 and Pax1 overexpressing cells significantly overlap in the same direction and ERK1 associated complexes may phosphorylate Pax2 and Pax1, suggesting that Pax2 and Pax1 may be downstream components of a MAPK/ERK1 signaling pathway. Our results reveal functional redundancy between Pax2 and Pax1 in up-regulation of the key encystation-induced genes. These results illustrate functional redundancy of a gene family can occur in order to increase maintenance of important gene function in the protozoan organism G. lamblia

    Design, Synthesis, Mechanisms of Action, and Toxicity of Novel 20( S )-Sulfonylamidine Derivatives of Camptothecin as Potent Antitumor Agents

    Get PDF
    Twelve novel 20-sulfonylamidine derivatives (9a–9l) of camptothecin (1) were synthesized via a Cu-catalyzed three-component reaction. They showed similar or superior cytotoxicity compared with that of irinotecan (3) against A-549, DU-145, KB, and multidrug-resistant (MDR) KBvin tumor cell lines. Compound 9a demonstrated better cytotoxicity against MDR cells compared with that of 1 and 3. Mechanistically, 9a induced significant DNA damage by selectively inhibiting Topoisomerase (Topo) I and activating the ATM/Chk related DNA damage-response pathway. In xenograft models, 9a demonstrated significant activity without overt adverse effects at 5 and 10 mg/kg, comparable to 3 at 100 mg/kg. Notably, 9a at 300 mg/kg (i.p.) showed no overt toxicity in contrast to 1 (LD50 56.2 mg/kg, i.p.) and 3 (LD50 177.5 mg/kg, i.p.). Intact 9a inhibited Topo I activity in a cell-free assay in a manner similar to that of 1, confirming that 9a is a new class of Topo I inhibitor. 20-Sulfonylamidine 1-derivative 9a merits development as an anticancer clinical trial candidate
    corecore