22 research outputs found

    Micro-Renewal of Old Communities in Huang Shi City

    Get PDF

    Modeling Occupant Window Behavior in Hospitals—A Case Study in a Maternity Hospital in Beijing, China

    Get PDF
    Nowadays, relevant data collected from hospital buildings remain insufficient because hospital buildings often have stricter environmental requirements resulting in more limited data access than other building types. Additionally, existing window-opening behavior models were mostly developed and validated using data measured from the experimental building itself. Hence, their accuracy is only assessed by the algorithm’s evaluation index, which limits the model’s applicability, given that it is not tested by the actual cases nor cross-verified with other buildings. Based on the aforementioned issues, this study analyzes the window-opening behavior of doctors and patients in spring in a maternity hospital in Beijing and develops behavioral models using logistic regression. The results show that the room often has opened windows in spring when the outdoor temperature exceeds 20 °C. Moreover, the ward windows’ use frequency is more than 10 times higher than those of doctors’ office. The window-opening behavior in wards is more susceptible to the influence of outdoor temperature, while in the doctors’ office, more attention is paid to indoor air quality. Finally, by embedding the logistic regression model of each room into the EnergyPlus software to simulate the CO2 concentration of the room, it was found that the model has better applicability than the fixed schedule model. However, by performing cross-validation with different building types, it was found that, due to the particularity of doctors’ offices, the models developed for other building types cannot accurately reproduce the window-opening behavior of doctors. Therefore, more data are still needed to better understand window usage in hospital buildings and support the future building performance simulations of hospital buildings

    Effects of Cavity Thickness and Mold Surface Roughness on the Polymer Flow during Micro Injection Molding

    No full text
    In micro injection molding, the cavity thickness and surface roughness are the main effects factors of polymer flow in the die designing and affect the quality of molded products significantly. In this study, the effects of cavity thickness and roughness of cavity surface were investigated mainly on polymer flow during molding and on the roughness of molded products. The parts were molded in the cavities with the thickness from 0.05 mm to 0.25 mm and surface roughness from Ra = 46.55 nm to Ra = 462.57 nm, respectively. The filling integrities and roughness replication ratio of molded parts were used to evaluate the statements of polymer flow and microstructure replication during micro injection molding, respectively. The results showed that the filling integrity changing trends in the thinner cavities were obviously different or even opposite to those in the thicker cavities with the changing of cavity surface roughness instead of single trend in the conventional studies. For each cavity surface roughness, the filling integrity showed an upward trend with the increasing cavity thickness. In different cavity thickness, the maximum gap of filling integrity was 23.76 mm, reaching 544.94% from 0.05 mm to 0.25 mm. Additionally, the surface roughness ratio was slightly smaller than one before, reaching the polymer surface roughness limit around Ra = 71.27 nm, which was decided by the nature of the polymer itself. This study proposed the references for the design and fabrication of mold cavities and parts, and saved time and cost in the actual product manufacturing

    Analysis of Main Influencing Factors of the Wastewater Evaporation in Flue Duct

    No full text
    Desulfurization wastewater has the characteristics of small discharge and high pollution, and must be strictly treated. To obtain the main factors affecting the evaporation characteristics of desulfurization wastewater in boiler flue, a 600MW unit of a coal-fired power plant in China was taken as an example. According to the theory of fluid mechanics and heat transfer, the numerical simulation method was used. The results show that the way the nozzle is installed on the upper wall of the flue inlet can enhance the evaporation effect of the desulfurization wastewater. It is also revealed that the influence of the flue gas flow rate on the droplet evaporation effect is relatively small. The smaller droplet diameter and the higher flue gas inlet temperature will obviously enhance the evaporation effect of the droplets in the flue. However these two factors will increase the operating cost and reduce the boiler thermal efficiency. Therefore, the values of the droplet diameter and the flue gas inlet temperature need to be further determined by technical and economic comparison

    A Novel Carbon Dots/Thermo-Sensitive In Situ Gel for a Composite Ocular Drug Delivery System: Characterization, Ex-Vivo Imaging, and In Vivo Evaluation

    No full text
    We developed a potential composite ocular drug delivery system for the topical administration of diclofenac sodium (DS). The novel carbon dot CDC-HP was synthesized by the pyrolysis of hyaluronic acid and carboxymethyl chitosan through a one-step hydrothermal method and then embedded in a thermosensitive in situ gel of poloxamer 407 and poloxamer 188 through swelling loading. The physicochemical characteristics of these carbon dots were investigated. The results of the in vitro release test showed that this composite ocular drug delivery system (DS-CDC-HP-Gel) exhibited sustained release for 12 h. The study of the ex vivo fluorescence distribution in ocular tissues showed that it could be used for bioimaging and tracing in ocular tissues and prolong precorneal retention. Elimination profiles in tears corresponded to the study of ex vivo fluorescence imaging. The area under the curve of DS in the aqueous humor in the DS-CDC-HP-Gel group was 3.45-fold that in the DS eye drops group, indicating a longer precorneal retention time. DS-CDC-HP with a positive charge and combined with a thermosensitive in situ gel might strengthen adherence to the corneal surface and prolong the ocular surface retention time to improve the bioavailability. This composite ocular delivery system possesses potential applications in ocular imaging and drug delivery

    Influence of Various Tea Utensils on Sensory and Chemical Quality of Different Teas

    No full text
    The choice of tea utensils used for brewing significantly impacts the sensory and chemical attributes of tea. In order to assess the influence of various tea sets on the flavor and chemical composition of different tea varieties, a combination of sensory evaluation and high-performance liquid chromatography was employed. The results showed that the content of amino acids in the tea liquid brewed with tin tea utensils was relatively higher, which could exhibit freshness in taste, thus suitable for brewing green tea and white tea. The content of polyphenols, soluble carbohydrates, and water extract in the tea liquid brewed with a porcelain tea set was relatively higher; the sweetness and thickness of the tea liquid were increased, so it was more beneficial to brew black tea. The purple sand tea set was suitable for brewing oolong tea and dark tea, and could endow their respective quality characteristics. Ultimately, these research findings provide a scientific basis for the selection of tea utensils tailored to different types of tea

    Nickel-Doped Manganese Dioxide Electrocatalysts with MXene Surface Decoration for Oxygen Evolution Reaction

    No full text
    Electrochemical water splitting (EWS) has been considered as an ideal strategy to produce renewable hydrogen energy. However, the application of EWS is hindered by its sluggish kinetics of oxygen evolution half-reaction. In this work, we successfully prepared an efficient MXene-Ni0.075Mn0.925O2/CC catalyst for oxygen evolution reaction (OER) enhanced by a novel electrodeposition process. By corroborating from characterization results, the Ni element has been successfully doped into the MnO2crystal. In addition, electron microscopy images visualized that MXene firmly cooperated with the Ni-doped MnO2. With the proper amount of Ni doping in the pristine MnO2, more defects were induced. In addition, the two-dimensional (2D) MXene cooperation collaboratively provided more mass transport channels for OER. Therefore, the prepared MXene-Ni0.075Mn0.925O2/CC catalyst exhibited an outstanding catalytic performance with an overpotential of ?410 mV at a constant current density of 50 mA cm-2, about 105 mV smaller than that of the pristine MnO2/CC catalyst. The proposed electrodeposition method may pave the way for future designing of binder-free electrocatalytic materials for EWS
    corecore