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Abstract: Nowadays, relevant data collected from hospital buildings remain insufficient because hos-
pital buildings often have stricter environmental requirements resulting in more limited data access
than other building types. Additionally, existing window-opening behavior models were mostly
developed and validated using data measured from the experimental building itself. Hence, their
accuracy is only assessed by the algorithm’s evaluation index, which limits the model’s applicability,
given that it is not tested by the actual cases nor cross-verified with other buildings. Based on the
aforementioned issues, this study analyzes the window-opening behavior of doctors and patients in
spring in a maternity hospital in Beijing and develops behavioral models using logistic regression.
The results show that the room often has opened windows in spring when the outdoor temperature
exceeds 20 ◦C. Moreover, the ward windows’ use frequency is more than 10 times higher than those
of doctors’ office. The window-opening behavior in wards is more susceptible to the influence of
outdoor temperature, while in the doctors’ office, more attention is paid to indoor air quality. Finally,
by embedding the logistic regression model of each room into the EnergyPlus software to simulate
the CO2 concentration of the room, it was found that the model has better applicability than the
fixed schedule model. However, by performing cross-validation with different building types, it was
found that, due to the particularity of doctors’ offices, the models developed for other building types
cannot accurately reproduce the window-opening behavior of doctors. Therefore, more data are still
needed to better understand window usage in hospital buildings and support the future building
performance simulations of hospital buildings.

Keywords: window-opening behavior; hospital building; logistic regression; EnergyPlus; cross-validation

1. Introduction

The study of window-opening behavior can be traced back to the 20th century when
Nicol et al. [1] proposed that natural ventilation can be provided using openable windows
and other adaptive mechanisms. Natural ventilation is one of the most straightforward
and healthy methods to enhance thermal comfort and air quality in indoor atmospheres [2].
Compared to mechanical ventilation, this approach uses less energy and is better for the
indoor environment [3,4]. In naturally ventilated buildings, people frequently use windows
to regulate the indoor temperature for thermal comfort and indoor air quality, especially
during transitional seasons [5]. According to Li et al. [6], opening windows for just two
minutes can provide sufficient fresh air needed for a standard room. Additionally, when
all windows are open, the total ventilation rate may even be higher than that provided
by mechanical ventilation [7]. However, the occupants’ window-opening behavior often
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exhibits significant randomness and uncertainty, leading to unreliable ventilation for the
building [8]. This randomness/uncertainty also causes a significant performance gap
between simulated and actual building performances, i.e., a performance gap. Therefore,
capturing and understanding the dominant factors affecting occupants’ window-opening
behavior is essential for accurate and efficient building design and operation [9].

In the early research, the method of collecting data for window-opening behaviors
was to take photos of the window status at different times every day [10,11]. With the
development of research, the means of collecting data have changed to conducting ques-
tionnaires with indoor personnel many times a day [12,13]. Until 2004, the monitoring of
window-opening behaviors began to change from questionnaire surveys to sensor monitor-
ing [14]. This measurement method is more convenient and can obtain real-time data for
more accurate research. After that, lots of research on window-opening behavior began to
appear. The types of buildings studied mainly focus on residential and office buildings.
For example, Pan et al. [15] studied one university office building in China and reported
that the opening and closing behaviors of windows is affected by working hours and
environmental factors. It was found that people usually open/close windows when they
arrive or leave their offices. Wei et al. [16] suggested that the window state at the end of the
day was affected by factors such as season, office floor, gender, etc., according to the data
collected from one office building in the UK. According to Yun et al. [17], these factors also
affect occupants’ window-opening behavior during office hours. In particular, the influence
of seasons has been observed as indicated by the fact that when the outdoor temperature is
the same but in different seasons, the law of window-opening behavior also changes [18].
Yun et al. [19] also found that the window state after leaving the office also affected the
window use in the office the next day. Furthermore, due to directional factors such as
solar radiation and wind direction, window orientation may also affect window-opening
behavior [20]. This can also be interpreted as the influence of environmental factors on
window-opening behavior. Among all the environmental factors, indoor and outdoor air
temperatures were reported as the most significant [15–23]. With the deepening of the
related research in this area, the influence of other factors has been revealed, including
indoor and outdoor relative humidity, PM2.5 concentration, indoor CO2 concentration,
outdoor wind speed, etc. [5,15,23].

It is well acknowledged that residential buildings have different functions compared
to office buildings, especially during resting and sleeping. Therefore, the time of day affects
the window behavior in residential buildings differently from that of office buildings. In
order to determine the typical window-opening schedule in Chinese residential buildings,
Lai et al. [24] undertook one-year research across 58 apartments in 14 cities across five
major climatic regions, and their results indicated that, on weekdays, approximately 40%
of window-opening actions occurred between 6:00 and 9:00, and on weekends, window-
opening behavior mainly occurred from 9:00 to 17:00. Additionally, more frequent window-
opening action was found in families with people who did not need to leave their home
to work. In terms of time-related factors, some daily activities in residential buildings
differ from those in office buildings, such as cooking, cleaning, and getting fresh air, which
accounted for 27%, 40%, and 33% of residential buildings’ window opening probability,
respectively [25]. Additionally, regardless of the building type, occupants’ window-opening
behavior is also affected by environmental factors, again with the ambient temperature
as the major factor [26,27]. Besides temperature, the CO2 concentration also showed
a significant influence [28–30]. In some studies, it has been found that the influence of CO2
concentration was even more significant than that of indoor and outdoor temperatures [31].
Furthermore, indoor and outdoor humidity, indoor and outdoor PM2.5 concentrations,
solar radiation, etc., have also been considered as influential in residential window-opening
behaviors [32,33].

Notably, comprehensive research on the window-opening behaviors of offices and
residential buildings has been widely explored and acknowledged, and its law under
the influence of environmental and non-environmental factors has been discussed in
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detail. However, research on window-opening behaviors in a hospital architecture has
rarely been reported. A hospital is a special area with a large vulnerable population and
multiple pollution sources [34,35]. Therefore, besides maintaining a high ventilation rate, it
is essential to adjust hospital buildings’ internal ventilation reasonably [36]. Hence, it is
undeniably necessary to study how doctors and patients operate their windows in hospitals
and identify the major influential factors in these behaviors. Shi et al. [37] investigated
the window-opening habits of two wards in a naturally ventilated general hospital in
Nanjing, China. The study revealed seasonal differences in terms of window adjustments
to environmental changes, i.e., the correlation between outdoor temperature and window
opening probability was negative in the cooling season and positive in transitional and
heating seasons. Their study, however, focused on the window-opening behaviors in
hospital wards only, while ignoring the rooms where doctors were present, such as doctors’
offices and lounges. Compared to the wards, these rooms have different functions, and
their main occupants also vary. These differences may lead to a considerable different
window usages. Furthermore, the types of patients in the wards of different hospital types
may also be different. For example, most wards in maternity hospitals are filled with
pregnant women and newborns, who are more susceptible to environmental influences
owing to their weaker immune systems [38,39]. Therefore, these wards are different from
wards in other hospital buildings. Maternity hospitals need to design stricter criteria for air
quality than general hospitals, and the particularity of their window-opening behaviors
also needs further exploration. This study compares and evaluates the window-opening
behaviors of maternity hospital wards, a doctors’ office, and a doctors’ lounge in spring,
and uses the logistic regression method to model the window-opening behavior. As early
as 1973, Humphreys [40] proposed using logical regression to predict the window-opening
behavior. After that, more scholars used this algorithm to predict the window-opening
behavior in buildings [41]. Logistic regression is one of the most commonly used modeling
methods in the study of window-opening behavior to date, because it has irreplaceable
advantages in accuracy and explanatory power [42]. Currently, the methods to evaluate the
accuracy of the logistic regression model use a model evaluation algorithm that assesses
the accuracy which has not been further applied to the actual scenario. Moreover, they
are based on a proprietary prediction model corresponding to the initial building, which
limits their generalization for different cases. Therefore, to study the logistic regression
model, it is important to consider its applicability in the actual scene and the universality
of the model [43]. In order to solve the above problems, this study embeds the logistic
regression model of each room into the EnergyPlus software to simulate the indoor CO2
concentration in the room, and compares the simulation results to those of a fixed schedule.
In addition, this study also uses spring data from a Beijing school office [15], an infant’s
family home [8], and data from a doctors’ office to perform modelling and prediction, and
additionally uses a residential model [44] to predict the window-opening behavior in the
doctors’ office. Finally, different model evaluation indices are used to evaluate the errors
between the training and verification datasets, hence assessing the model’s accuracy. This
study supplements the deficiency of the research on window-opening behaviors in hospital
buildings, verifies the applicability of the logistic regression model in actual scenarios
and the generalization of prediction between different buildings, and provides ideas and
methods to further promote the logistic regression model.

2. Research Method
2.1. Case Study Building

The case study is a maternity hospital located in Beijing, China. Three maternity wards
located on the second floor of its inpatient department were selected, along with the doctors’
office and lounge on that floor. Reinforced concrete and thermal insulation materials make
up the main construction of the building, and there are no high-rise buildings or trees
around the building to obstruct solar radiation. Additionally, there is no significant outdoor
noise issue either. Figure 1 shows the exterior façade of the case study building. Each



Sustainability 2023, 15, 8606 4 of 29

room inside the building has openable external windows and is equipped with split air
conditioners and radiators, as shown in Figure 2a,b. In the cooling season, the indoor split
air conditioner is used for independent cooling. In the heating season, the central heating
is used to dissipate heat indoors through radiators. In the transition season, the rooms
rely on natural ventilation to improve the indoor environment. The investigated doctors’
office (with 8 occupants and 2 windows) and the three wards (2 rooms with 4 beds and
1 window, and a room with 2 beds and 1 window) are located on the northeast façade, and
the doctors’ lounge (with 1 window) is symmetrically arranged on the southwest façade.
Each patient in both wards is accompanied by two family members, whereas there is no
vacant bed in the ward during the test. On the other hand, two doctors are allowed to rest
in the lounge. The room marked with a red star in Figure 3 is the case study in this test. In
transitional seasons, indoor air quality and thermal environment are mainly controlled by
natural ventilation through manually opening/closing the room windows.
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2.2. Data Collection

In the early stage of window-opening behavior research, scholars only paid attention to
the influence of some thermal comfort parameters (mainly indoor and outdoor temperatures)
on people to propose many models for these parameters [45]. With the development of
research, scholars began to pay attention to other environmental factors, such as relative
humidity, wind speed, and PM2.5 concentration. It was found from previous studies that these
parameters will affect the window-opening behavior [15]. In this study, the measurement
was carried out in the spring season of 2019, between 15 March and 15 May. The measured
parameters included window state, indoor environmental parameters (i.e., temperature,
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relative humidity, and CO2 concentration), and outdoor environmental parameters (i.e.,
temperature, relative humidity, PM2.5 concentration, wind speed, and wind direction), as
shown in Figure 4a–c. Table 1 lists some major technical specifications for the monitoring
instruments used in this study. Before the field measurement, all instruments were calibrated
to ensure accuracy. The outdoor weather station was placed on the roof of the case study
building, while only the outdoor PM2.5 concentration was obtained from a close public weather
station [46]. A window magnetic switch recorder was used to monitor the opening/closing
state. This method is commonly used in existing studies [15]. In this study, the monitoring
interval was set to 10 min for all environmental parameters, except for the outdoor PM2.5
concentration, where an interval of 1 h is used. Table 2 provides descriptive statistics for the
environmental variables collected during the study period.

Sustainability 2023, 15, x FOR PEER REVIEW 5 of 31 
 

 
Figure 3. Architectural layout of the case study building. 

2.2. Data Collection 
In the early stage of window-opening behavior research, scholars only paid attention 

to the influence of some thermal comfort parameters (mainly indoor and outdoor temper-
atures) on people to propose many models for these parameters [45]. With the develop-
ment of research, scholars began to pay attention to other environmental factors, such as 
relative humidity, wind speed, and PM2.5 concentration. It was found from previous stud-
ies that these parameters will affect the window-opening behavior [15]. In this study, the 
measurement was carried out in the spring season of 2019, between 15 March and 15 May. 
The measured parameters included window state, indoor environmental parameters (i.e., 
temperature, relative humidity, and CO2 concentration), and outdoor environmental pa-
rameters (i.e., temperature, relative humidity, PM2.5 concentration, wind speed, and wind 
direction), as shown in Figure 4a–c. Table 1 lists some major technical specifications for 
the monitoring instruments used in this study. Before the field measurement, all instru-
ments were calibrated to ensure accuracy. The outdoor weather station was placed on the 
roof of the case study building, while only the outdoor PM2.5 concentration was obtained 
from a close public weather station [46]. A window magnetic switch recorder was used to 
monitor the opening/closing state. This method is commonly used in existing studies [15]. 
In this study, the monitoring interval was set to 10 min for all environmental parameters, 
except for the outdoor PM2.5 concentration, where an interval of 1 h is used. Table 2 pro-
vides descriptive statistics for the environmental variables collected during the study pe-
riod. 

Figure 3. Architectural layout of the case study building.
Sustainability 2023, 15, x FOR PEER REVIEW 6 of 31 
 

   
(a) (b) (c) 

Figure 4. Sensors utilized to collect data in this study: (a) magnetic field strength sensor; (b) indoor 
temperature- and humidity-measuring device; and (c) FSR-4 portable meteorological station (tem-
perature, humidity, wind speed, and wind direction). 

Table 1. Experimental specifications. 

Environmental 
Parameters Monitoring Instruments Model Range Accu-

racy 
Recording 

Interval 

Indoor temperature Indoor-monitoring 
instruments WSZY-1 −20–55 °C 0.1 °C 10 min 

Indoor relative humidity   0–100% 0.1% 10 min 

Indoor CO2 concentration CO2 self-recording instrument WEZY-1
0–5000 
ppm ±75 ppm 10 min 

Outdoor temperature 

FSR-4 portable meteorological station —— 

−50–150 °C ±0.1 °C 10 min 
Outdoor relative humid-

ity 
0–100% 

RH 0.1% RH 10 min 

Wind speed 0–60 m·s–1 0.1 m·s–1 10 min 
Wind direction 0–360° ±3° 10 min 

Outdoor PM2.5 concentra-
tion 

Meteorological station in Tongzhou New 
Town [46] —— —— —— 1 h 

Window status Magnetic field strength sensor CKJM-1 —— —— 10 min 
Note: ‘——’ means blank here. 

Table 2. Descriptive statistics of the monitored environmental variables. 

Room Index Tin 

(°C) 
RHin 
(%) 

CO2in 
(ppm) 

Tout 

(°C) 
RHout 

(%) 
PM2.5out 

(μg·m−3) 
Wout 

(m·s−1) 

Ward 1 

Max 28.4 69.1 3467 28.3 96 168 15.4 
Min 18.1 12.2 351 −1.9 2 0 0 

Mean 24.8 37.6 1209.5 12.1 36.8 45.8 3.4 
Median 24.9 36.8 1067 11.8 31 36.67 2.8 

Ward 2 

Max 30.2 65.7 4080 28.3 96 168 15.4 
Min 18 11.6 351 −1.9 2 0 0 

Mean 25.1 37.1 1222.6 12.1 36.8 45.8 3.4 
Median 25 35.7 1096 11.8 31 36.67 2.8 

Ward 3 

Max 28.5 74.2 5026 28.3 96 168 15.4 
Min 19.8 14.6 293 −1.9 2 0 0.0 

Mean 24.7 43.1 1456 12.1 36.8 45.8 3.4 
Median 24.8 40.8 1425 11.8 31 36.7 2.8 

Figure 4. Sensors utilized to collect data in this study: (a) magnetic field strength sensor; (b) in-
door temperature- and humidity-measuring device; and (c) FSR-4 portable meteorological station
(temperature, humidity, wind speed, and wind direction).



Sustainability 2023, 15, 8606 6 of 29

Table 1. Experimental specifications.

Environmental
Parameters Monitoring Instruments Model Range Accuracy Recording

Interval

Indoor temperature Indoor-monitoring
instruments WSZY-1 −20–55 ◦C 0.1 ◦C 10 min

Indoor relative humidity 0–100% 0.1% 10 min
Indoor CO2 concentration CO2 self-recording instrument WEZY-1 0–5000 ppm ±75 ppm 10 min

Outdoor temperature
FSR-4 portable

meteorological station
——

−50–150 ◦C ±0.1 ◦C 10 min
Outdoor relative humidity 0–100% RH 0.1% RH 10 min

Wind speed 0–60 m·s–1 0.1 m·s–1 10 min
Wind direction 0–360◦ ±3◦ 10 min

Outdoor PM2.5 concentration Meteorological station in
Tongzhou New Town [46] —— —— —— 1 h

Window status Magnetic field strength sensor CKJM-1 —— —— 10 min

Note: ‘——’ means blank here.

Table 2. Descriptive statistics of the monitored environmental variables.

Room Index Tin
(◦C)

RHin
(%)

CO2in
(ppm)

Tout
(◦C)

RHout
(%)

PM2.5out
(µg·m−3)

Wout
(m·s−1)

Ward 1

Max 28.4 69.1 3467 28.3 96 168 15.4
Min 18.1 12.2 351 −1.9 2 0 0

Mean 24.8 37.6 1209.5 12.1 36.8 45.8 3.4
Median 24.9 36.8 1067 11.8 31 36.67 2.8

Ward 2

Max 30.2 65.7 4080 28.3 96 168 15.4
Min 18 11.6 351 −1.9 2 0 0

Mean 25.1 37.1 1222.6 12.1 36.8 45.8 3.4
Median 25 35.7 1096 11.8 31 36.67 2.8

Ward 3

Max 28.5 74.2 5026 28.3 96 168 15.4
Min 19.8 14.6 293 −1.9 2 0 0.0

Mean 24.7 43.1 1456 12.1 36.8 45.8 3.4
Median 24.8 40.8 1425 11.8 31 36.7 2.8

Doctors’
office

Max 31.9 68.4 2357 32 98 158 15.4
Min 19.3 11.6 305 −1.9 1.1 0.0 0.0

Mean 23.5 33.9 721.5 15.2 40.7 45.7 2.3
Median 23.6 31.9 698 15.2 34.4 37 1.6

Doctors’
lounge

Max 31.9 68.4 4977 28.3 96 168 15.4
Min 19.3 11.6 352 −1.9 2 0 0.0

Mean 23.5 34.1 733.8 12.1 36.8 45.8 3.4
Median 23.6 31.8 655 11.8 31 36.67 2.8

Note: Tin—indoor temperature (◦C); RHin—indoor relative humidity (%); CO2in—indoor CO2 concentration
(ppm); Tout—outdoor temperature (◦C); RHout—outdoor relative humidity (%); PM2.5out—outdoor PM2.5 concen-
tration (µg·m−3); Wout—outdoor wind speed (m·s−1).

2.3. Statistical Analysis

Similarly to existing studies [47–49], this study adopted the logistic regression analysis
to analyze window-opening behavior in buildings and examine the variables influencing
maternity hospitals’ window-opening practices.

Before modeling, the F test in the analysis of variance (ANOVA) was used to test the
relationship between the respective variables and the dependent variables. ANOVA is
a statistical test to evaluate the significant difference between the mean values of specific
measurements. If the p value is less than 0.05, it is considered that the independent
variable has a significant influence on the dependent variable [5]. The calculation method
is as follows:

F =
MSB
MSF

=
SSB(r − 1)
SSE(n − r)

(1)

where SSB represents the sum of squares of deviations between the average value of each
group of variables and the total average value, indicating the differences between groups;



Sustainability 2023, 15, 8606 7 of 29

SSE represents the sum of the average value of each group of variables and the sum of the
squares of the deviations of this group of variables, representing the intra-group differences;
MSB and MSE are the mean square values obtained by dividing the inter-group SSB and the
intra-group SSE by their respective degrees of freedom (inter-group r − 1 and intra-group
n − r, where n is the total number of samples and r is the number of groups).

Then there is the logistic regression model. In this study, the dependent variable is the
window state (open/closed), not window-opening angle. Logit transformation makes the
dependent or independent variables of the logistic regression model linearly predictable.
Furthermore, the ratio of occurrence probability (P) to non-occurrence probability (1 − p) is
known as odds, and its logarithm is known as the logit transformation [8]. It is denoted as
logit, and the logistic regression function is represented by Equation (2) as follows:

logitp = ln
p

1 − p
= α +

i

∑
i=1

βixi (2)

where α is a constant; βi is a regression coefficient that represents the contribution of xi to
pi; xi is an explanatory variable independent of the window state; and p is the probability
of the window opening under different explanatory variables.

Before the analysis, all related environmental parameters must be normalized by
Equation (3) to compare the contributions of different explanatory variables.

x =
xi − xmin

xmax − xmin
(3)

where x is the normalized explanatory variable; xi is the unprocessed explanatory variable;
xmax is the maximum value of the explanatory variable; xmin is the minimum value of the
explanatory variable.

The normalized parameters were then entered into the logistic regression model as
input parameters. The statistical analysis was carried out using SPSS.26, a popular statistical
analysis tool worldwide (IBM, Armonk, NY, USA).

After the logistic regression model is established, the energy management system
(EMS) in EnergyPlus is used to add the window-opening behavior model to the building
model to simulate the indoor CO2 concentration. The functions used are Sensor, Actua-
tor, Program calling manager, and Program, where each function is responsible for the
following work:

(1) Sensor: defines the variable parameters (indoor temperature, indoor relative humidity,
indoor CO2 concentration, outdoor temperature, outdoor humidity, outdoor PM2.5,
outdoor wind speed, and wind direction) required for building the window model.

(2) Actuator: defined as the name to determine the opening ratio of the dynamic window-
ing model. For example, the name of the opening ratio of the doctors’ office window
is defined as W10W, where 1 represents a fully open case and 0 represents a fully
closed case. Ventwin210 is the name of the opening rate defined in this model, and the
opening rate is defined in Schedule: Constant, in which the opening rate is initially
defined as 1.

(3) Program calling manager: determines the time to run the dynamic window model.
The model calling point selected in this study is ‘BeginNewEnvironment’. Hence, the
dynamic window model is triggered before inputting new parameters.

(4) Program: enters the dynamic window model. The model in EnergyPlus is defined
such that when the result of the logistic regression model is greater than 0, the window
opens; otherwise, the window is closed. The opening degree of this setting is half
of the fully opened area. This is based on the feedback from the interviews with
residents in the early stage of actual measurement, where they mentioned that half of
the windows are usually open.



Sustainability 2023, 15, 8606 8 of 29

3. Results and Analysis
3.1. Preliminarily Statistical Analysis

Figure 5 shows each room’s monitored window opening times and the calculated
window opening probability. It can be observed that the times of window openings in
the wards during the test are much higher than those in the doctors’ office and lounge.
The window opening times in the doctors’ office were only 8 during the whole test period,
which sharply contrasted with the 126 times in ward 3. Moreover, even though the window
opening probability of ward 3 and that of the doctors’ lounge are similar, with a difference
below 1%, the window opening times are far from each other. This shows that the patients
are more sensitive to the change in environment as they will change the window state in
time to ensure that the indoor environment is comfortable. Furthermore, it can be seen
from the daily variation curve of the window opening probability (Figure 6) that doctors
rarely change the state of windows many times in one day. Most of the time, the windows
are either open or closed for a long time, especially in the doctors’ office. In addition, the
window opening probability of all rooms only fluctuates in a small range in early spring, but
after 17 April, the window opening probability of all rooms, including the doctors’ office,
has significantly increased. By comparing the environmental parameters, it was found that
the outdoor temperature obviously increased, and appears to be close to 20 ◦C for the first
time. After that, the fluctuation range of the window opening probability of each room
obviously increased, and the phenomenon of window opening all day began to appear.
This also shows that the window-opening behavior is affected by the outdoor temperature.
However, the existence of other factors affecting the window-opening behavior cannot only
be found from the data observation. Hence, further statistical analysis is needed.
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3.2. Outdoor Environmental Factors

The above analysis shows that the outdoor temperature affects the window opening
probability. Nevertheless, its changing rule regarding the outdoor temperature is still unclear.
In addition, whether the window opening probability is affected by other environmental
factors and the type of change rules that exist needs further statistical analysis. Therefore,
this section first quantitatively analyzes the influence of outdoor environmental factors (tem-
perature, relative humidity, PM2.5 concentration, wind speed, and wind direction) on the
window-opening behavior in the wards, doctors’ office, and doctors’ lounge.

Figure 7a shows the relationship between the outdoor temperature and the window
opening probability. In spring, the window opening probability is positively correlated
with the outdoor temperature in the wards, doctors’ office, and doctors’ lounges. The
window opening probability for the five rooms is consistent with the change in the outdoor
temperature, but it can be seen from Figure 7b that, under the influence of outdoor relative
humidity, the doctors’ office begins to show different rules compared to other rooms. As
can be seen from the figure, when the outdoor relative humidity is in the range of 0–20%,
the window opening probability of four rooms apart from the doctors’ office is inversely
proportional to the outdoor relative humidity, with obvious fluctuations. The window
opening probabilities for Ward 1, Ward 2, and the doctors’ lounge rebounded after more
than 20%, and ward 3 began to rebound after more than 30%. In addition, the window
opening probabilities for wards 1 and 2 kept rising after the rebound, and did not begin to
decrease until the outdoor relative humidity exceeded 50%. However, the window opening
probability of ward 3 and the doctors’ lounge began to decline immediately upon reaching
10% relative humidity. Unlike these rooms, when the relative humidity of the doctors’
office was less than 40%, the window opening probability was positively correlated to the
outdoor relative humidity. The window opening probability was kept high in the range
of 40–70% until the outdoor relative humidity exceeded 70%, and the window opening
probability began to decline. This indicates that the doctors believe that 40–70% outdoor
relative humidity range is suitable. Additionally, its outdoor relative humidity acceptance
range is higher than other rooms compared to other rooms. This shows that, under the
influence of outdoor relative humidity, the window-opening behavior for the doctors’ office
varies from other rooms.

Figure 7c shows the relationship between the outdoor wind speed and window open-
ing probability. As can be seen from the figure, the window opening probability of five
rooms shows a consistent changing rule, where all of them are negatively correlated with
outdoor wind speed. In addition, it is worth noting that the window opening probability’s
variation law for the five tested rooms with the wind direction is the same (Figure 7d).
However, logically speaking, the window orientations of the five tested rooms are different,
and the influence of wind direction on the window opening probability of the room should
have corresponding rules according to the window orientation. Hence, it is impossible to
determine the reason from the curve analysis, which requires further combined modeling
to analyze its impact.

Finally, an explanation of how outdoor PM2.5 levels influence window-opening behav-
ior was provided (Figure 7e). Notably, PM2.5 is the source of several respiratory infections,
particularly in children under five, and is a severe health hazard [8]. Therefore, more
academics recently focused on how the PM2.5 concentration affects window-opening be-
havior [50]. According to China’s applicable specifications [51], when the concentration of
PM2.5 exceeds 75 µg·m−3, it is considered mild environmental pollution. As can be seen
from the figure, under the influence of outdoor PM2.5 concentration, the window opening
probability’s change law for the five tested rooms also shows the same law. When the
outdoor PM2.5 concentration is higher than 75 µg·m−3, the window opening probability
will not immediately decrease until the PM2.5 concentration reaches 110 µg·m−3. This result
can be attributed to the fact that the human body does not detect the slight environmental
pollution caused by an increased PM2.5 concentration at its low concentration. Therefore,
the premise of the PM2.5 concentration affecting the window-opening behavior is that
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its concentration must be greater than 110 g·m−3. This is because, when there is a high
concentration of PM2.5 outdoors, it causes some visible environmental pollution, such
as PM10.
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3.3. Indoor Environmental Factors

Section 3.2 analyzes the influence of outdoor environmental factors and window-
opening behavior and finds the difference between the doctors’ office and a room under
the influence of outdoor relative humidity. Moreover, this section continues to analyze the
influence of indoor environmental factors on the window-opening behavior.

Figure 8a shows that the window opening probabilities of the doctor’s room and ward
vary under the influence of indoor temperature. First of all, from the indoor temperature
range, the indoor temperature range of the ward is higher than the overall temperature
range of the doctors’ lounge and office. Secondly, from the changing trend of the window
opening probability, the doctors’ office and doctors’ lounge are positively correlated with
the indoor temperature, while the ward shows a trend of first decreasing and then rising,
and there is a minimum window opening probability. The lowest probability of opening
a window means that the indoor temperature is comfortable in this temperature range.
Hence, the window will not be opened to improve the indoor environment, while the
doctor’s room does not have this range. It shows that doctors and patients have different
requirements for indoor temperature environments, and patients are more committed to
creating a comfortable indoor environment.
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Similarly to the indoor temperature’s influence, the indoor relative humidity’s effect
on window-opening behavior shown in Figure 8b differs between doctors’ office, doctors’
lounge, and wards. For instance, the doctors’ office is positively correlated with the indoor
relative humidity, while the ward is negatively correlated, and all of them show a sharp
turning point when it is greater than 40%. It is worth noting that the relative humidity in
the doctors’ lounge is less than 45%, the trend of the window opening probability is the
same as that in the doctors’ office, and after it is more than 45%, it starts to be the same as
that in the ward. This shows that the doctors’ lounge differs from the doctors’ office and
ward’s window-opening behavior due to the difference in room function and indoor staff.

Figure 8c shows the relationship between indoor CO2 concentration and window-
opening behavior. It can be seen that, unlike the influence of indoor temperature and
relative humidity, under the influence of indoor CO2 concentration, the window opening
probabilities for the five tested rooms display the same trend and all decrease. However, it
is generally recognized that an increase in indoor CO2 concentration reduces the indoor air
quality, and a positive association between the window opening probability and indoor
CO2 concentration is more likely. The following is an explanation for this phenomenon that
entirely goes against common sense:

(1) Indoor air quality gradually deteriorates when CO2 concentrations are between
1000 and 2000 ppm [52]. However, 2000 ppm is insufficient to make individuals
feel stuffy indoors. Therefore, occupants in the room are not motivated to open
windows when the indoor CO2 content is below 2000 ppm. The window opening
probability is higher in the range of 0–2000 ppm, indicating that frequent window
opening for other reasons lowers the indoor CO2 concentration. Consequently, CO2
concentrations in the range of 0–2000 ppm constitute the effect of windowing behavior
rather than its cause.

(2) Previously reported statistical data also indicate that the highest CO2 concentration in
the doctors’ office is far lower than in other rooms. More than 2000 ppm accounted for
only 1% of the entire test period, which is far less than other rooms with rest functions.
Furthermore, Table 3 presents that the indoor CO2 concentration exceeding 2000 ppm
mainly occurs during sleep in other rooms. In particular, when the concentration
exceeds 3000 ppm, 72.3% of the cases occur at night. A high CO2 level may make
indoor employees drowsy throughout the day, but it does not wake them while
sleeping at night. As a result, a high CO2 concentration cannot be considered to
determine the window-opening behavior during this period.

Table 3. Time distribution of high CO2 indoor concentrations.

Time

Occurrence Time of CO2 High Concentration (h)

2000–2500
(ppm)

2500–3000
(ppm)

3000–3500
(ppm)

3500–4000
(ppm)

4000–4500
(ppm)

4500–5000
(ppm)

0:00–1:00 66.8 32 6.8 1.7 0 0
1:00–2:00 24.7 12 2.1 2.1 0.3 0
2:00–3:00 23.7 13.7 3.8 1.5 1.5 0
3:00–4:00 24.1 10.8 9.5 1.1 0.8 0.7
4:00–5:00 17.5 14 10.8 1.3 0 1
5:00–6:00 19.5 17 4.7 1.3 0.1 1
6:00–7:00 18.7 12 2 1 0 0.8
7:00–8:00 13 12 2 1 0 0.8
8:00–9:00 6.1 5.1 1.3 0.7 0 1
9:00–10:00 3.1 3.1 0.3 0 0.7 0.3

10:00–11:00 25 3 0 0 1 0
11:00–12:00 2 2.1 0 0 1 0
12:00–13:00 6.1 2.7 0.1 0.3 0.7 0
13:00–14:00 5.8 0.5 0.1 0 0 0
14:00–15:00 6.3 0.1 0 0 0 0
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Table 3. Cont.

Time

Occurrence Time of CO2 High Concentration (h)

2000–2500
(ppm)

2500–3000
(ppm)

3000–3500
(ppm)

3500–4000
(ppm)

4000–4500
(ppm)

4500–5000
(ppm)

15:00–16:00 5.3 1.3 0.1 0 0 0
16:00–17:00 7.1 1.5 0 0 0 0
17:00–18:00 10.5 1 0 0 0 0
18:00–19:00 8.8 0.8 0.1 0.3 0.1 0
19:00–20:00 4.5 0 0 0 0.1 0.8
20:00–21:00 10.8 2 0 0 0 1
21:00–22:00 9.1 3.7 0.3 0.7 0.3 0
22:00–23:00 8.1 3.5 2.1 0 0 0
23:00–24:00 9.8 3.5 2.1 0 0 0

Briefly, the behavior of opening windows may not be caused by indoor CO2 concen-
tration. In contrast, a more reasonable explanation is that the window-opening behavior
affects the distribution of indoor CO2 concentration.

According to the above environmental factors analysis, it is found that, under the
influence of outdoor relative humidity, the window opening probability of the doctors’
office shows a different trend compared with other rooms. Under the influence of indoor
temperature, the window opening probability of the doctors’ office and lounge is the
same. Nevertheless, this probability differs from that of the ward. Additionally, under
the influence of indoor relative humidity, the window-opening behaviors of the doctors’
office, resting room, and ward are different. This shows that these three types of rooms will
have different window-opening behaviors under the influence of some factors due to the
differences in indoor personnel and room types. Therefore, a mix of rooms should not be
adopted in the research on hospital buildings.

3.4. Time Factor

Besides environmental factors, time is one of the factors that cannot be ignored. The
research shows that the window-opening behavior in office buildings will be affected by
the arrival and departure times of employees [15–17], and the window-opening behavior in
residential buildings will also be affected by the rest time of residents [24]. Therefore, the
influence of time on window-opening behavior varies for different types of buildings. In this
study, patients always visit the maternity hospital 24 h a day, and the office has no so-called
off-duty hours. Therefore, the influence of time on its window-opening behavior needs further
statistical analysis. Figure 9 depicts the relationship between the window opening probability
of five test rooms in the maternity hospital building and the time of day.

It can be seen that, except for the doctors’ office, the window opening probabilities
for the four rooms display an upward trend in the early morning (6:00–9:00) but keep
decreasing after 21:00. This shows that the window-opening behaviors in rooms with a rest
function can be divided into those for wake-up time and sleeping time. During the wake-
up time, the window opening probability increases, and the window opening probability
decreases during sleep time. However, the doctors’ office is distinct from the other four
rooms. As an always-open office, the behavior in the doctors’ office in terms of opening
windows does not conform to the norms of waking up and sleeping times. In contrast, the
probability of a window being opened in the five investigated rooms, including the doctors’
office, drastically increased at midday during the daily activity period (11:00–13:00). This
result is attributed to the fact that the windows in these rooms are opened at midday for
fresh air and different reasons.

From the above analysis, it can be seen that both environmental and non-environmental
factors statistically impact the room’s window-opening behavior. However, defining the
factor that has a stronger correlation with the window-opening behavior requires further
analysis in the following modeling results.
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3.5. Window-Opening Behavior Modeling

According to the previous analysis, there are obvious differences in the window-
opening behaviors between the doctors’ office, doctors’ lounge, and the wards. In order to
avoid affecting the modeling results, the doctor’s room and wards were modeled separately.
In addition, unlike the doctors’ office, the lounge is a resting room where the window
orientation is not similar to that of the office, so the doctors’ office and the lounge were
modeled separately. For the three wards, Ward 1 and Ward 2 were classified into one
category for modeling, namely Ward I, while Ward 3 was modeled separately, namely,
Ward II, because its window orientation differs from the other two wards. The variables in
the model include indoor environmental factors such as the temperature, relative humidity,
and CO2 concentration, as well as outdoor environmental factors, such as the temperature,
relative humidity, PM2.5 concentration, and wind speed and direction, as well as include
the time of non-environmental factors.

Before modeling, it was verified whether the dependent variable (window) will be
affected by various factors, assuming that all independent variables do not influence the
dependent variable (window). Whether this hypothesis is true was determined using the F
test. Table 4 shows the results of the variance analysis for each room.

Table 4. Variance analysis of the results for different rooms.

Room F Df1 Df2 Sig.

Doctors’ office 2253.430 1 8039 0.000
Doctors’ lounge 620.967 1 7946 0.000

Ward I 1451.652 1 16,278 0.000
Ward II 961.546 1 7107 0.000

It can be seen that the Sig. value is less than 0.05, indicating that the hypothesis is not
established and that at least one independent variable will affect the dependent variable
(window). Therefore, all variables are included in the logistic regression model to test the
influence of each variable on the window opening probability.

Several assumptions must be satisfied before modeling the logistic regression model [42].
First of all, it is essential to remove outliers with significant influence. If there are too many
outliers, the model’s overall accuracy will be affected. The standard IQR rule was used to
eliminate abnormal values [53], and the box diagram was used to test them. Figure 10 shows
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the filtered box diagram of each room’s data. The figure indicates that the abnormal values of
all data were completely deleted.
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Secondly, it determines the number of covariates in the logistic regression model. Too
many covariates will lead to the over-fitting of the model. The number of covariances
that the logistic regression model can accommodate was determined using the minimum
number of events in the data. A rule of thumb, in this case, is taking the number of
events corresponding to a covariant as 10–20. There are 9 covariates in this study, so
the corresponding minimum number of events is 90. In this paper, there are more than
8000 data samples collected from all types of rooms, among which the number of window
openings is the minimum number of events in this modeling, but there are also more
than 1000 data points. Hence, the number of covariates in this modeling conforms to the
provisions of the relevant empirical rules.

The third assumption is the independence of the error. Hence, the results of all sample
groups are independent of each other (thus, there is no repeated response). The data
collected in this study have time continuity, where time exists as an independent variable.
Accordingly, the samples used in this paper are independent of each other and satisfied
with this assumption.



Sustainability 2023, 15, 8606 16 of 29

The fourth assumption is that there is no multicollinearity or redundancy between
independent variables. The hypothesis is tested using the variance inflation factor (VIF),
and Table 5 shows the collinearity diagnosis results. The results show that the VIF is less
than 10, and the variables have no collinearity [54].

Table 5. Multicollinearity diagnosis result.

Room Outdoor
Temperature

Outdoor
Relative

Humidity

Wind
Speed

Outdoor PM2.5
Concentration

Indoor
Temperature

Indoor
Relative

Humidity

Indoor CO2
Concentration

Wind
Direction Time

Doctors’ office 5.547 7.659 1.589 1.788 1.712 7.326 1.521 1.091 1.665
Doctors’ lounge 4.228 6.084 1.498 1.755 1.659 5.926 1.16 1.08 1.434

Ward I 3.801 4.872 1.518 1.645 1.373 3.924 1.767 1.086 1.464
Ward II 2.703 3.764 1.511 1.689 1.26 2.535 1.341 1.072 1.444

The last point is that there is a linear relationship between continuous independent
variables and the logitP. Because there are negative and zero values in the continuous
variables collected this time, it cannot be verified by the traditional method of taking a nat-
ural logarithm [42]. In order to verify this hypothesis, this paper uses logistic regression
modeling to derive the predicted value p and then calculates this value as LN(P/1 − P),
which is the logitP. Thereafter, a linear model between logitP and each variable is estab-
lished through linear regression, and whether there is a linear relationship between each
continuous variable and logitP is judged by the model-fitting effect (R2). Table 6 shows the
R2 values for the linear regression models of various rooms, and the fitting effects of the
models are all above 90%. This shows that the fitting effect of the linear model is good, and
the hypothesis is established.

Table 6. Linear regression model fitting results.

Room R R2 Adjusted R2 Std. Error of the Estimate

Doctors’ office 0.989 0.979 0.979 0.27089
Doctors’ lounge 0.992 0.985 0.985 0.19156

Ward I 0.984 0.967 0.967 0.42048
Ward II 0.980 0.960 0.960 0.34384

Through the above steps, it is shown that the collected data meet the requirements
of logistic regression modeling. Hence, the next modeling steps can be carried out. The
outdoor wind direction and time are input into the model as classification variables, and
the time is classified according to Section 3.4. The specific classification methods are shown
in Table 7.

Table 7. Time classification of two types of rooms.

Classification Wards Doctors’ Office

T 20:00–6:00 Night 00:00–6:00 Early morning
τ(1) 6:00–9:00 Morning 6:00–12:00 Forenoon
τ(2) 9:00–14:00 Noon 12:00–18:00 Afternoon
τ(3) 14:00–20:00 Afternoon 18:00–00:00 Night

This paper uses the SPSS.26 software to establish the logistic regression model for
monitoring data. Before modeling, the independent variable data must be carefully nor-
malized and collinearity diagnosed to ensure that the data are comparable and there is
no approximate linear relationship. Tables 8 and 9 show the modeling results for the
doctors’ office in addition to the doctors’ lounge and for the ward, respectively. Among
them, the normalized regression coefficient B represents the influence of the independent
variables on dependent variables. Sig. is the statistical value of p that determines whether



Sustainability 2023, 15, 8606 17 of 29

the independent variable is statistically significant compared to the dependent variable. If
p < 0.05, the difference is significant; otherwise, it is excluded.

Table 8. The results for the doctors’ office and lounge.

Doctors’ Office Doctors’ Lounge

Variable B Sig. P Exp(B) B Sig. P Exp(B)

τ 0.000 0.000
τ(1) 0.600 0.000 1.823 0.647 0.000 0.749
τ(2) 0.327 0.012 1.387 0.266 0.006 0.853
τ(3) −0.354 0.001 0.702 −0.094 0.324 0.686

Wind direction 0.000 0.000 0.402
Wind direction (1) 0.299 0.051 1.348 −0.290 0.051 0.446
Wind direction (2) −0.360 0.028 0.698 −0.159 0.271 0.413
Wind direction (3) −0.391 0.007 0.676 −0.377 0.004 0.624
Wind direction (4) −0.221 0.085 0.802 −0.911 0.000
Wind direction (5) −0.326 0.020 0.721 −0.808 0.000 1.910
Wind direction (6) −0.543 0.004 0.581 −0.883 0.000 1.304
Wind direction (7) −0.147 0.303 0.863 −0.472 0.000 0.910

Outdoor temperature 2.961 0.000 19.325 4.729 0.000 113.193
Outdoor relative

humidity 0.312 0.511 1.367 −2.642 0.000 0.071

Wind speed −1.476 0.000 0.229 −0.906 0.000 0.404
Outdoor PM2.5
concentration −0.487 0.041 0.615 −1.714 0.000 0.180

Indoor temperature 7.180 0.000 1313.473 2.906 0.000 18.291
Indoor relative

humidity 4.443 0.000 85.015 1.444 0.001 4.240

Indoor CO2
concentration −8.108 0.000 0.000 −17.392 0.000 0.000

Constant −6.362 0.000 0.002 −2.379 0.000 0.093

Table 9. The logistic regression results of the wards.

Ward I Ward II

Variable B Sig. P Exp(B) B Sig. P Exp(B)

τ 0.000 0.000
τ(1) −0.026 0.701 0.974 0.657 0.000 1.928
τ(2) −0.320 0.000 0.726 0.428 0.000 1.535
τ(3) −0.396 0.000 0.673 −0.250 0.022 0.778

Wind direction 0.000 0.000
Wind direction (1) −0.190 0.042 0.827 −0.278 0.077 0.757
Wind direction (2) −0.419 0.000 0.658 −0.204 0.199 0.815
Wind direction (3) 0.052 0.531 1.053 −0.615 0.000 0.541
Wind direction (4) −0.122 0.107 0.885 −0.572 0.000 0.564
Wind direction (5) −0.252 0.002 0.778 −1.005 0.000 0.366
Wind direction (6) 0.115 0.274 1.122 −0.837 0.000 0.433
Wind direction (7) 0.313 0.000 1.368 −0.203 0.155 0.816

Outdoor temperature 7.424 0.000 1675.606 12.850 0.000 380,715.060
Outdoor relative

humidity 3.386 0.000 29.541 7.109 0.000 1223.009

Wind speed −3.585 0.000 0.028 −0.804 0.015 0.447
Outdoor PM2.5
concentration 0.102 0.430 1.108 −1.394 0.000 0.248

Indoor temperature 1.902 0.000 6.696 −3.356 0.000 0.035
Indoor relative

humidity −5.633 0.000 0.004 −8.847 0.000 0.000

Indoor CO2
concentration −1.050 0.000 0.350 −3.929 0.000 0.020

Constant −4.062 0.000 0.017 −3.590 0.000 0.028
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The simulation results show that the indoor CO2 concentration greatly influences
the window-opening behavior in the doctors’ office and lounge. Moreover, the indoor
environment has a more pronounced influence on the window-opening behavior in the
doctors’ office as compared to the outdoor environment. However, for the doctors’ lounge,
the outdoor temperature along with the CO2 concentration have the most significant
influence, followed by the indoor temperature. This shows that doctors are in different
states and pay special attention to the environment. Doctors in a working state pay attention
to the overall indoor environment, while doctors in a resting state pay attention to the
ambient temperature.

For the wards, it can be seen from the modeling results that the environmental factors
affecting the window-opening behavior in the three wards are similar. First, similarly to
the doctors’ lounge, its window-opening behavior strongly correlates with the outdoor
temperature, indicating that the room with the rest function pays more attention to the
outdoor temperature change. Secondly, unlike the doctors’ lounge, the indoor and outdoor
relative humidity strongly correlates with the wards’ window-opening behavior. Both are
negatively correlated with the indoor relative humidity and positively correlated with the
outdoor relative humidity. As a way to adjust the indoor environment, the window opening
probability decreases with the increase in indoor relative humidity, which indicates that
the personnel in the wards are more willing to keep the indoor air environment slightly
humid, and the window opening probability increases when the outdoor relative humidity
is high, which further proves this point. Moreover, it is worth noting that the outdoor PM2.5
concentration has a noticeable influence on the air quality. As a hospital building, it is more
critical to timely adjust the window state according to the air quality change to ensure good
air quality inside the building and patients’ health. However, from the modeling results,
it is found that the window-opening behaviors of the five tested rooms have no strong
correlation with the PM2.5 concentration, which deserves further attention.

For the two classified variables of time and wind direction, it can be seen from the
results that the window-opening behavior in the doctors’ office shows different rules during
four time periods. However, there is no significant difference between τ(3) and the reference
time period in the doctors’ lounge, which indicates that the window opening probability
changes with time similarly in the night and the afternoon periods. There is no significant
difference between τ(1) and the reference time period in the four different periods of Ward
I. This shows that, in Ward I, the window-opening behavior in the morning is similar to
that in the night. The change law of the window opening probability with time can only
be divided into noon, afternoon, and night. However, for Ward II, the window opening
probabilities for the four time periods vary with time. In addition, as far as the wind
direction is concerned, eight wind directions have different influences on the four rooms’
types, indicating that the wind direction has different influences over the window-opening
behavior due to different window orientations.

Equations (4)–(7) are the mathematical model formulas for the doctors’ office, doctors’
lounge, and the wards in this maternity hospital, respectively:

Doctors’ office:

log itp = 2.961Tout − 1.476WSout − 0.487PM2.5out + 7.18Tin + 4.43RHin − 8.108CO2in + 0.6τ(1) + 0.327τ(2)
−0.354τ(3)− 0.360WDout(2)− 0.391WDout(3)− 0.326WDout(5)− 0.543WDout(6)− 6.362

(4)

Doctors’ lounge:

log itp = 4.729Tout − 2.642RHout − 0.906WSout − 1.714PM2.5out + 2.096Tin + 1.444RHin − 17.392CO2in + 0.747τ(1)
+0.266τ(2)− 0.377WDout(3)− 0.911WDout(4)− 0.808WDout(5)− 0.883WDout(6)− 0.472WDout(7)− 2.379

(5)

Ward I:

logitp = 7.424Tout + 3.386RHout − 3.585WSout + 1.902Tin − 5.633RHin − 1.050CO2in − 0.320τ(2)
−3.396τ(3)− 0.190WDout(1)− 0.419WDout(2)− 0.252WDout(5) + 0.313WDout(7)− 4.062

(6)

Ward II:
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log itp = 12.850Tout + 7.109RHout − 1.394PM2.5out − 0.804WDout + 3.356Tin − 8.847RHin − 3.929CO2in + 0.657τ(1)
+0.428τ(2) + 0.250τ(3)− 0.615WDout(3)− 0.572WDout(4)− 0.1005WDout(5)− 0.837WDout(6)− 3.590

(7)

where Tout is the outdoor temperature; Tin is the indoor temperature; RHin is the outdoor
relative humidity; RHout is the outdoor relative humidity; CO2in is the indoor CO2 concen-
tration; PM2.5out is the outdoor PM2.5 concentration; WSout is the outdoor wind speed; τ is
time; WDout is the wind direction.

3.6. Evaluating Logistic Regression with EnergyPlus

In this section, using the Energy Management System (EMS) in EnergyPlus, the logistic
regression model of each room is added to the EnergyPlus building model, and the indoor
CO2 concentration is simulated by adding the software module of the dynamic window
model. Figure 11 shows the software interface of each step in this simulation process.
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Section 3.5 established the window-opening behavior model of each room, and then
it will be necessary to establish the fixed schedule model for each room. The principle of
establishing a fixed timetable is: compare the window opening probability of each hour
with the daily average window opening probability of buildings, and if it is greater than
the daily average window opening probability, it is regarded as a window opening within
that hour; otherwise, it is set to the closed state [55]. Table 10 shows the fixed schedule of
the window opening in each room.

Table 10. Fixed timetable for each room.

Room Time Window

Doctors’ office
00:00–09:00 0
9:00–15:00 1
15:00–24:00 0

Doctors’ lounge

24:00–08:00 0
8:00–20:00 1
20:00–21:00 0
21:00–24:00 1
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Table 10. Cont.

Room Time Window

Ward 1

00:00–07:00 0
7:00–16:00 1
16:00–17:00 0
17:00–23:00 1
23:00–24:00 0

Ward 2

00:00–10:00 0
10:00–11:00 1
11:00–13:00 0
13:00–17:00 1
17:00–18:00 0
18:00–23:00 1
23:00–24:00 0

Ward 3
00:00–11:00 0
11:00–19:00 1
19:00–24:00 0

Based on the above two methods, the CO2 concentration in each room is simulated
and compared to the measured CO2 concentration, as shown in Figure 12a–e.
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It can be seen that the indoor CO2 concentration simulated by the dynamic logistic
regression model is closer to the measured results. On the other hand, the Pearson corre-
lation test is used to test the correlation between the CO2 concentration simulated by the
above two methods and the measured CO2 concentration. Table 11 lists the test results,
where the Sig value indicates whether the correlation between two variables is significant,
and the correlation indicates the strength of the correlation between both variables.

Table 11. Correlation comparison between simulated results and measured data of indoor
CO2 concentration.

Room
Logistic Regression Fixed Schedule

Correlation Sig. Correlation Sig.

Doctors’ office −0.311 0.000 −0.0058 0.000
Doctors’ lounge −0.272 0.000 −0.083 0.000

Ward 1 −0.318 0.000 0.249 0.000
Ward 2 −0.218 0.000 −0.028 0.029
Ward 3 −0.290 0.000 0.020 0.121

The results show that the simulation result for the indoor CO2 concentration using
an embedded dynamic logistic regression model is better than that using a fixed schedule.
Among them, the doctors’ office, Ward 1, and Ward 2 are more obvious, and the correlation
is over 20% higher than it is with the fixed schedule. This shows that the dynamic model
can accurately reproduce the behavior of indoor people to realize an accurate indoor CO2
concentration simulation and indicates the applicability of the logical regression model in
actual cases.

3.7. Mutual Verification of Models

This section verifies and discusses the generalization of the logistic regression model in
different buildings. Schweiker et al. [42] once suggested that when buildings have similar
environments and only change their internal environment through windows, the regression
parameters derived from one building can successfully simulate the window-opening
behavior in another building. However, applying this model to Japanese residential
buildings did not accurately predict this conclusion. Therefore, this paper further verifies
this conclusion in Beijing. To further verify this finding, this study used the spring data
for a school office and an infant’s family in Beijing [15,43], and the data for the doctors’
office discussed earlier for modeling and prediction. In addition, the window-opening
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behavior in the doctors’ office was predicted using a known window-opening behavior
model of a residence in Beijing in spring [44]. Finally, the model prediction accuracy is
comprehensively compared using various model evaluation indices. Table 12 provides
descriptive statistics of the school office and the infant’s family data.

Table 12. Parameter characteristics of the school office and infant’s family residence in Beijing.

Variable Minimum Maximum Average Value

School office

Indoor temperature (◦C) 17.1 30.7 24.3
Outdoor temperature (◦C) 8.5 25.39 17.9

Outdoor PM2.5 concentration (µg/m3) 8.0 202.0 66.5
Outdoor relative humidity (%) 9.9 95.6 40.6

Wind speed (m/s) 0.0 4.1 0.91
Wind direction (◦) - - -

Number of valid cases 5943

Infant’s family residence

Indoor temperature (◦C) 19 32.8 24.3
Indoor relative humidity 17 56 37.9

Indoor CO2 concentration (ppm) 400 3400 667.0
Outdoor temperature (◦C) 0 35 17.4

Outdoor relative humidity (%) 11 99 59.4
Outdoor PM2.5 concentration (µg/m3) 3 190 43.9

Wind speed (m/s) 0 7 1.5
Wind direction (◦) - - -

Number of valid cases 34,241

The specific verification method is as follows: firstly, three different room types (school
office, infant’s family residence, and doctors’ office) are modeled. The parameter selection
strategy of the model uses the same parameter of two mutually verified room types. For
example, when the school office and the doctors’ office forecast each other, because the data
of the school office only contains six parameters—namely indoor and outdoor temperature,
outdoor humidity, outdoor PM2.5 concentration, wind direction, and wind speed—in order
to ensure the fairness of the forecast, the doctors’ office model used to predict the window
state of the school office should only include the six aforementioned parameters. Once the
model is generated, the data of the school office will be imported into the doctors’ office’s
model to obtain the school office’s predicted window state. Then, the predicted window
state is compared to the actual monitored window state to determine the correctness of the
model. Figure 13 shows the model verification process of the school office as an example.
For the known spring residential model in Beijing, the data for the doctors’ office were
directly implemented into the model to obtain the prediction results, and the results
were compared with the actual statistical data of the window opening. Finally, different
model evaluation indices were used to test the accuracy of the model verification, and the
verification error was obtained. The specific indicators include:

1. Window opening probability [43]

This is defined as the ratio of the window opening time to the total test time. The model
prediction result is taken as the ratio of the positive sample size to the total sample size.
This standard allows us to check the overall consistency of the predicted opening duration.

2. ∆OR [55]

∆OR is the ratio of the difference between the window opening probability predicted
by the model and the actual window opening probability of the building to the actual
window opening probability. According to the article’s provisions, if it falls within ±10%,
the model is considered to have a good prediction effect.

3. Number of window-opening actions [43]
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The model’s predicted window opening result indicates the number of times the
window state changes from closed to open. This index can compare the consistency and
dynamics of window-opening behavior.
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Figure 13. Model verification process: (a) modeling process; and (b) validation procedure.

4. Accuracy (ACC)

In the prediction results of the model, this is defined as the ratio of the correct sample
size to the total sample size.

5. F1-score [56]

When evaluating a binary classification problem, a confusion matrix is usually de-
veloped, as shown in Table 13, with columns representing the actual values and rows
representing the predicted values.

Table 13. Confusion matrix.

Measured Result

0 1

Predicted result
0 True negative (TN) False negative (FN)
1 False positive (FP) True positive (TP)

The precision, calculated using Equation (8), is a positive predictive value which is
defined as the proportion of the predicted positive samples in actual positive samples.
As shown in Equation (9), the recall is denoted as the sensitivity and is the proportion of
samples predicted to be positive that are actually positive. The F1-score, the harmonic mean
of the precision and recall, as defined in Equation (10), is an indicator used in statistics to
measure the accuracy of binary classification models. The higher the F1-score, the more
consistent the predicted results are with the measured results.

Precision =
TP

TP + FN
(8)
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Recall =
TP

TP + FP
(9)

F1-score =
2 × precision × recall

precision + recall
(10)

Table 14 shows the equations and the precision of the four models. For the school
office model, because the wind direction and outdoor PM2.5 concentration do not meet the
significance requirements, they are not included in this model. Table 15 shows the model
prediction accuracy calculated using the above evaluation indices.

Table 14. Logistic regression models of four room types and their accuracy.

Building Type The Binary Logistic Regression Model

School office log itp = 4.60Tin + 1.00Tout − 0.63PM2.5 − 2.95

Doctors’ office

For school office logitp = 6.56Tout + 6.96Tin + 4.15RHout − 1.08WSout − 0.42PM2.5 + 0.29WDout(1)
−0.44WDout(2)− 0.53WDout(3)− 0.39WDout(4)− 0.61WDout(5)− 0.66WDout(6)− 9.03

For residence log itp = −5.22CO2 + 7.12Tin + 3.36RHin − 0.733PM2.5out
+4.47Tout + 1.74RHout − 1.19WSout − 7.612

For infant’s
family residence

log itp = −4.80CO2 + 7.18Tin + 3.30RHin − 0.57PM2.5 + 4.46Tout + 1.16RHout − 1.00WSout
+0.375WDout(2)− 0.34WDout(3)− 0.37WDout(4)− 0.30WSout(6)− 0.38WDout(7)− 7.52

Residence log itp = 2.11CO2 + 2.096Tin − 5.277RHin − 3.547PM2.5out
+5.71Tout + 4.512RHout − 2.158WSout − 1.844

Infant’s family residence log itp = −7.23CO2 − 0.801Tin + 1.662RHin − 1.84PM2.5 + 6.26Tout + 1.88RHout − 1.19WSout
+0.264WDout(2)− 0.287WDout(3) + 0.375WDout(5) + 0.289WDout(6) + 0.632WDout(7)− 3.35

Table 15. The models verify each other’s accuracy.

Measured Data Verification
Model

Window Opening
Probability (%)

OR
(%)

Window
Opening Times

Acc
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

School offices
Doctors’ office 13.64 −67.98 391 63.1 71.16 22.77 34.50

38.77 −9.00 611 68.7 64.62 58.77 61.56
Error (%) 25.13 58.99 220 −5.6 −6.54 −36.00 −27.06

Doctors’ office
School offices 10.83 −40.48 46 78.9 36.51 21.75 27.26

8.46 −53.53 20 83.6 60.59 28.18 38.47
Error (%) 2.38 13.05 26 −4.7 −24.08 −6.43 −11.21

Doctors’ office
Residence 43.09 136.74 117 64.3 29.64 70.20 41.68

13.39 −26.41 35 87.9 72.89 53.69 61.84
Error (%) 29.69 163.15 82 −23.6 −43.25 −16.50 −20.16

Doctors’ office
Infant’s

family residence 43.00 136.29 584 66.05 31.67 74.90 44.51

13.67 −24.90 80 88.1 72.98 54.86 62.63
Error (%) 29.34 −161.19 504 −22.05 −41.31 20.04 −18.12

Infant’s
family residence

Doctors’ office 47.20 −12.75 162 68.8 79.51 59.04 67.77
60.60 12.02 157 78 77.64 84.84 81.08

Error (%) −13.40% 24.78 5 −9.2 1.87 −25.80 −13.32

Although the building with the same environment and indoor environment is only
adjusted through windows was selected, its prediction result is unsatisfactory. It can be
seen from the verification results that, regardless of what kind of building model is used,
the prediction results of the doctors’ office window-opening behavior have a significant
error. Even for the school office buildings with similar building types, although the error of
the ACC obtained is small, it is unacceptable for the indicators that describe their window-
opening behavior characteristics, such as the window opening probability, window opening
times, etc. This may be due to the particularity of the doctors’ office building, which leads
to the significant difference between its window-opening behavior characteristics and other
buildings. Therefore, its window-opening behavior model cannot predict the window-
opening behavior in other building types. On the contrary, the window-opening behavior
model of other building types cannot accurately reproduce the window-opening behavior in
the doctors’ office. Therefore, the study of window-opening behavior in the doctors’ office
still needs more accurate modeling and prediction through measured data. In addition,
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for other building models, it is necessary to further verify whether the accurate prediction
results can be obtained under the conditions that the types of people in the rooms and the
room functions are all similarly met.

4. Discussion

Each building type has its particularity, leading to the difference in the building
window-opening behaviors. For example, indoor staff have commuting times to an office
building, so their window-opening behavior will be affected by the indoor staff’s arrival
and departure times [15–19]. The window-opening behavior in residential buildings will
change regularly according to the household’s work and rest rules [24]. Although the
window-opening behavior on the surface is influenced by time, the window-opening rules
for both cases are different.

The hospital building chosen in this study varies from other building types. First of all,
there are many different types of rooms in the same hospital building, including the doctors’
office, doctors’ lounge, and ward. Among them, the number of wards is the largest, which
is the most important room type in hospital buildings. Therefore, in the previous research
on hospital buildings, only the wards were concerned [37]. However, this paper showed
that the window-opening behavior characteristics of these three types of rooms differ from
each other. From the doctors’ office, even though the doctors’ office and the ordinary
office are both office places, the doctors’ office does not have the same working hours as
the ordinary office, so its window-opening behavior will not change regularly due to the
change in the time when indoor personnel arrive and leave the office. Secondly, due to the
particularity of the doctors’ profession, they pay more attention to the change in the indoor
air quality, so the most significant factor affecting the window-opening behavior in the
doctors’ office and doctors’ lounges is the indoor CO2 concentration, which is different from
that in ordinary offices. In ordinary office buildings, the window-opening behavior is more
related to the air temperature [15–23]. This is why, in the early window-opening behavior
study, scholars only modeled the window-opening behavior according to the indoor and
outdoor temperatures [45]. Furthermore, in the study of an ordinary office, indoor and
outdoor environments affect window-opening behaviors. However, the window-opening
behavior in hospital offices is more affected by the indoor environment. Compared to
the doctors’ lounge, although the indoor staff is the same as in the doctors’ office, the
window-opening behavior in the doctors’ lounge will be affected by the resting time due
to the rest function. Besides the indoor air quality, the doctors’ lounge is influenced by
the change in the outdoor air temperature, which is another obvious difference from the
doctors’ office. For the wards, the difference with the doctor’s room is that the patient
operates the window more frequently, which shows that the patient is more concerned
about environmental change. Moreover, patients’ attention to the environment mainly
focuses on the factors that affect the indoor thermal comfort, such as temperature and
humidity, whereas their attention to air quality is weak, which is different from that of
doctors’ office and doctors’ lounge.

More models that are suitable for window-opening behavior research have been de-
veloped from the research on window-opening behavior models, such as the random forest
algorithm and support vector machine algorithm. They are also more accurate in predicting
window-opening behavior and solving the problem of unbalanced window-opening behav-
ior data. However, in the meantime, the model’s evaluation remains limited to the use of the
model evaluation algorithm to assess the model’s prediction accuracy. Its applicability has
not been tested by applying it to an actual scene. In addition, Dai et al. [41] believed that
the influence of outdoor temperature, outdoor relative humidity, and other environmental
parameters on window-opening behavior will lead to different window-opening habits
of residents in different regions and seasons. Therefore, the model’s reliability should be
carefully checked when transplanting the window state model to buildings in other seasons
and regions. This paper uses a logistic regression model to simulate the buildings and
study the above problems. Firstly, the logistic regression model of each room is embed-
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ded in EnergyPlus to simulate the CO2 concentration in the room and compared to the
prediction result based on the fixed schedule model. The results show that the logistic
regression model is superior to the fixed schedule model in terms of simulating the indoor
CO2 concentration. It shows that the prediction of the window-opening behavior using this
algorithm model can improve the simulation accuracy of indoor air quality in buildings as
well as proves that the logistic regression model has certain applicability in actual scenes.
Secondly, this study also uses a logistic regression model to verify and evaluate the doctors’
office, an infant’s family house, and a school office building. The selected buildings are
all in Beijing, and the test season was spring without mechanical ventilation. The results
show a significant error between the training and verification models. This finding may be
due to the great difference between several types of buildings, especially the doctors’ office.
This also shows that hospital buildings’ window-opening behavior differs from those of
other buildings. Therefore, it is necessary to further investigate for the window-opening
behavior in special buildings.

5. Limitation

In this paper, the window-opening behavior in maternity hospitals was studied, and
the differences in the window-opening behaviors between the doctors’ office, doctors’
lounge, and wards were found. Additionally, two different doctor’s rooms (office and
lounge) were investigated. It was found that the doctors pay different attention to the
environment during office hours and rest hours, and the main factors affecting their
window-opening behavior also vary. Therefore, studying the window-opening behavior
in hospital buildings requires considering wards, doctors’ office, and doctors’ lounge.
Generally, this study only considered the indoor and outdoor environmental factors and
time but did not consider the gender, age, clothing, and other factors of indoor personnel.
In the statistical process, only the opening and closing state of the window was considered,
while the window’s angle and size were not considered. In addition, this study also verified
the applicability of the logistic regression model in actual scenes and its generalization to
other buildings. However, only the windows’ influence is considered in the actual scenario.
In future research, doors, windows, air conditioners, and other structures that affect indoor
air distribution can be considered comprehensively. Furthermore, due to the particularity
of the doctors’ office, the logistic regression model could not achieve accurate prediction
results in other buildings. Hence, in the generalization aspect, it is possible to consider the
buildings with the same function and indoor personnel type for verification in the future.

6. Conclusions

In this study, the window-opening behavior in a maternity hospital in Beijing in spring
is modeled and analyzed for the first time, including the influence of environmental and
non-environmental factors on the window-opening behavior in the doctors’ office, doctors’
lounges, and wards. Additionally, this study also used data of different building types and
data of doctors’ office in this study to build models and predict each other. The feasibility
of popularizing the logistic regression model is further verified and discussed. The specific
conclusions are as follows:

1. In spring, the operating frequency of ward windows is far more frequent than that
of the doctor’s room, with an average of 1 to 2 times a day. The doctors’ room’s
windows remain open or closed for a long time. Furthermore, in the spring, the
window opening probability of all rooms increases on the day when the outdoor
temperature is close to the peak of 20 ◦C, and after that, the phenomenon of window
opening all day begins to appear.

2. According to the statistics of window opening probability changing with the time
of day, it was found that the window opening probability of all rooms except the
doctors’ office increased by 5% to 10% in the morning and kept decreasing after 21:00.
However, as the doctors’ office is a 24 h room, its window-opening behavior did not
follow this rule. Hence, the doctors’ office needs a separate analysis and modeling.
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3. Doctors have different requirements for the environment under different conditions.
The modeling and analysis results show that the main factors affecting the doctors’
office and the doctors’ lounge are different. The main factors affecting doctors’ office
window-opening behavior are indoor environmental factors, including CO2 concen-
tration, temperature, and relative humidity. The main factors affecting the doctors’
lounge’s window-opening behavior are indoor CO2 concentration and indoor and
outdoor temperature. Therefore, two different rooms should be discussed in the
hospital architecture research.

4. Outdoor temperature affects the window-opening behavior for rooms with rest func-
tions, such as wards and doctors’ lounge. Through the modeling results, the most
relevant factor to the window-opening behavior in the three wards is the outdoor
temperature. Among the critical factors that affect the doctors’ lounge’s window-
opening behavior, besides the indoor CO2 concentration, the most relevant one is the
outdoor temperature. Therefore, when studying the window-opening behavior in
buildings with rest function, it is important to pay more attention to the influence of
outdoor temperature.

5. The dynamic logistic regression model can better simulate indoor air quality in actual
cases. The correlation between the simulated results and the measured ones of indoor
CO2 concentration by the logistic regression model in EnergyPlus software is more
than 20% higher than that by the fixed timetable model.

6. Due to the room particularity, the window-opening behavior characteristics of the
doctors’ office cannot be accurately predicted by the models of other buildings. Even
though they are all office buildings, accurate prediction results cannot be obtained
due to the differences of staff type in the room or the working hours. Therefore, the
research on the doctors’ office still needs to be measured to get a more accurate predic-
tion model. However, it is necessary to further verify whether buildings with similar
room functions, types and the same personnel in the room can be mutually verified.
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